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Abstract - This paper presents a stable self-tuning PID control scheme for a class of uncertain continuous-time single-input 
single-output (SISO) nonaffine nonlinear dynamic systems. Based on the implicit function theory, the existence of an ideal 
controller, that can achieve control objectives, is firstly shown. Since the implicit function theory guarantees only the 
existence of the ideal controller and does not provide a way for constructing it, a PID controller is employed to 
approximate this unknown ideal control law. The three PID control gains are the adjustable parameters and they are 
updated online with a stable adaptation mechanism designed to minimize the error between the unknown ideal controller 
and the used PID controller. The effectiveness of the proposed adaptive control scheme is demonstrated through the 
simulation of a simple nonaffine nonlinear system. 
 
Index Terms - PID control, adaptation mechanism, Nonaffine nonlinear systems. 
 
 
 

I. INTRODUCTION 

The PID control algorithm is the well known 
approach in the automatic control field. Since 1940, 
emerge of process control, PID controllers are used in 
most of the feedback loops of process industries despite 
continual advances in control theory. These controllers 
are preferred because of their versatility, simple 
structure, high reliability and easy implementation on 
analog or digital platforms. Nowadays, around the 90% 
of industrial objects are controlled by PID controllers 
[1]. The key idea of designing a PID controller is the 
choice of three parameters, i.e. proportional gain pK , 

integral gain IK , and derivative gain dK . To yield 

satisfactory control results, the values of pK , IK  and 

dK  must be tuned. Over the past half century, 

researchers have sought the key techniques for PID 
tuning. These methods can be classified as: (1) 
empirical methods such as the Ziegler–Nichols method 
[2][3] and the internal model control [3], (2) analytical 
methods such as root locus based techniques [3], (3) 
methods based on optimization such as the iterative 
feedback tuning [4][5], genetic algorithm tuning 
technique [6][7], chaotic optimization [8] and 
optimization with the extended Kalman filter (EKF) [9], 
(4) self-tuning methods [10][11][12]. However, the 

empirical techniques, the analytical methods and the 
methods based on optimization have some particular 
conditions regarding the plant models, such as dead 
time or transport lag, fast and slow poles, real and 
complex conjugated zeros and poles, as well as unstable 
poles, etc. These conditions make the previous methods 
non-general and only suitable in the case of linear 
systems with a known model. 

By reason of the progress in the industrial 
applications, there are many processes with time-variant 
or nonlinear characteristics and, hence, the PID 
controller tuned with conventional tuning methods 
becomes inefficient for these systems. In order to solve 
this problem, the adaptive PID controller design has 
received wide attention. The common design idea of 
adaptive PID controller is to adjust PID parameters 
according to varying system states to obtain better 
control effects. For SISO systems, there are many kinds 
of adaptive PID control methods that have been 
proposed [11][13][14][15]. In the paper [11], Chang et 
al. developed a self-tuning PID control for a class of 
continuous-time SISO nonlinear systems based on the 
Lyapunov approach. The stability of the closed-loop 
system is analyzed and guaranteed by introducing a 
supervisory control and a modified adaptation law with 
projection. In [13], Chang and Yan proposed an 
adaptive robust PID controller design based on a sliding 
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mode for a class of uncertain chaotic SISO nonlinear 
systems. In [14], Mizumoto et al. proposed a design 
scheme of an adaptive PID control system for discrete-
time SISO nonlinear systems based on the output 
feedback strictly passive property of the controlled 
system. In [15], Mizumoto et al. presented the design of 
an adaptive PID control system with a parallel 
feedforward compensator for discrete time SISO 
systems and its application to water level control of a 3-
tank system. 

In this paper, we introduce a stable self-tuning PID 
control scheme for a class of uncertain SISO nonaffine 
nonlinear dynamic systems. The basic idea is to use PID 
controllers to approximate an unknown ideal controller. 
At first, the implicit function theory has been used to 
prove the existence of an ideal controller that can 
achieve control objectives. Within this scheme, the 

adaptive laws of the gains pK , IK  and dK  are 

designed, based on the gradient descent method, to 
directly minimizing the error between the unknown 
ideal controller and the used PID controllers. The 
overall closed-loop system stability is studied by using a 
Lyapunov approach. The proposed SISO self-tuning 
PID controller guarantees the boundedness of all 
variables in the closed-loop system and the convergence 
of the output tracking error to a small neighborhood of 
the origin.  

This paper is organized as follows. Section II 
presents the control problem formulation and control 
objectives. The proposed self-tuning PID controller 
scheme is described in section III with its adaptive law 
and the stability analysis of the overall system. In 
section IV, the proposed control scheme is used to 
control a simple nonaffine nonlinear. Finally, section V 
concludes the paper. 

I. PROBLEM STATEMENT 

The class of uncertain nonaffine SISO nonlinear 
systems to be studied in this paper is represented in the 
following normal form:  

  
1 2 2 3 1

1

, , ,

,

n n

n

x x x x x x

x f u

y x

  



 

  

 x   (1) 

where  1, , n
nx x R


 x , is the state vector of the 

system in the normal form which is assumed available 
for measurement, u R  is the scalar control inputs, 

y R  is the scalar system output, and  ,f ux  is an 

unknown smooth nonlinear function. 
Differentiating y  with respect to time for n  times, 

until the inputs appear, one obtains the input-output 
form of (1) as 

    ,
n

y f u x   (2) 

In this section, our goal is to design a control law 

 u t  for system (1) such that the system output  y t  

follows a desired trajectory  dy t  while all signals in 

the closed-loop system remain bounded. 
Throughout this paper we make the following 

assumptions regarding the system (1) and the desired 

trajectory  dy t . 

Assumption 1. The function     , ,uf u f u u  x x  is 

nonzero and bounded for all  , xu R x  . This 

implies that  ,uf ux  is strictly either positive or 

negative for all  , xu R x  . Without loss of 

generality, it is assumed that the function   ,uf ux  is 

bounded as  0 10 ,uf u   x  where 0  and  1  

are some positive constants. Note that the result of this 
paper can be easily adapted to the case of systems with 

 0 1, 0uf u     x . 

Assumption 2. The desired trajectory  dy t  and its 

time derivatives     ,  1, ,
i

dy t i n  , are smooth and 

bounded. 
Define the tracking error as 

      de t y t y t    (3) 

and the filtered tracking error as 

    
1

,  0
n

d
s t e t

dt
 


 

   
 

  (4) 

From (4),   0s t   represents a linear differential 

equation whose solution implies that the tracking error 

 e t  converges to zero with a time constant  1n  . 

In addition, the derivatives of  e t  up to 1n   also 

converge to zero [16]. Thus, the control objective 

becomes the design of a controller to keep   s t  at zero, 

therefore, the original stabilizing problem of the n 

dimensional vector  1n
e e


 

  , is reduced to that of 

keeping the scalar  s t  at zero. Moreover, bounds on 

 s t  can be directly translated into bounds on the 

tracking error. Specifically, if we have  s t    where 

  is a positive constant, we can conclude that [16]: 
     12 ,  0, , 1i i nie t i n        . These bounds can 

be reduced by increasing the design parameters  . 
The time derivative of the filtered error (4) can be 

rewritten as 

        1 1

1 1 ,
n n

d ns y e e f u 

      x   (5) 

with 

 
   

1 !
,  1, , 1.

! 1 !
n i

i

n
i n

n i i
  
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 
 

Let a signal v  be defined as 
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     

 

1 1

1 1

0 0    tanh

n n

d nv y e e K s

K s

 





    




  (6) 

where 0K   and 0 0K  , 0  is a small positive 

constant, and  tanh   is the hyperbolic tangent function. 

Remark 1. The motivation of using the term 

 0 0tanhK s   in the signal v , is to ensure some 

robustness, against modeling error, for the adaptive PID 
controller which will be proposed later. The term 

 0 0tanhK s   is a smooth approximation of the 

discontinuous term  0K sign s  usually used in robust 

control. So, 0K  is selected larger than the magnitude of 

the uncertainty and it will affect the convergence rate of 

the tracking error, and 0  is chosen very small to best 

approximate the sign function and it will affect the size 
of the residual set to which the tracking error will 

converge. The sign function  sign   is not used here to 

avoid problems associated with it as chattering and 
solutions existence. 

By adding and subtracting the term, 

 0 0tanhK s K s  , to the right-hand side of (5), we 

obtain 

     0 0tanh ,s K s K s f u v     x   (7) 

From Assumption 1 and the fact that the signal v , 
defined in (6), does not explicitly depend upon the 

control input u , the partial derivative of  ,f u vx  

with respect to the input u  satisfies 

 
    , ,

0
f u v f u

u u

  
 

 

x x
  (8) 

Thus, based on the implicit function theorem [17,18], 
we know that the nonlinear algebraic equation 

 , 0f u v x  is locally solvable for the input u  for 

each  ,ux . Thus, there exists some ideal controller 

 * ,u vx  satisfying the following equality for all 

 , xu R x : 

   *, , 0f u v v x x   (9) 

Therefore, if the control input u  is chosen as the 

ideal control law, i.e., *u u , the closed-loop error 
dynamic (7)  is reduced to 

  0 0tanhs K s K s      (10) 

From which one can conclude that   0s t   as t   

and, therefore,  e t  and all its derivatives up to 1n   

converge to zero [16]. 
However, the implicit function theory only 

guarantees the existence of the ideal controller  * ,u vx  

for system (1), and does not prescribe a technique for 
constructing it even if the dynamics of the system are 

well known. In the following, we propose to design an 
adaptive PID control to construct this unknown ideal 
implicit controller. 

II. ADAPTIVE PID CONTROLLER DESIGN 

A. Control law 

To develop the control law, we assume that the 

unknown implicit ideal controller  * ,u vx  can be 

approximated by a PID controller pidu  given as follows: 

    
 

0
,

t

pid p I d

de t
u K e t K e d K

dt
      (11) 

where pK  is the proportional gain, IK  is the integral 

gain, and dK  is the derivative gain. For convenience, 

let , ,p I dK K K


     represent the vector of PID 

controller gains and      
 

0
, ,

t de t
e e t e d

dt
 


 

   
 

 . 

We emphasize again that   will be adjusted during the 
control procedure in this study. Hence, we can rewrite 
(11) as  

    ,pidu e e     (12) 

Moreover, we assume that there exists an optimal 

bounded time varying parameter vector *
i  with 

bounded time derivative such that the ideal control *
iu  

fulfil 

    * *u e     x   (13) 

where   x  is the approximation error, *  is an 

unknown ideal parameter vector which minimizes the 

function   x  . 

Before proceeding we need to introduce an 

assumption about the approximation error   x . 

Assumption 3. The approximation error   x  in (13) 

is bounded as   x  where   is a positive 

constant. 

Since the ideal parameter vector *  is unknown, so it 
should be estimated by a suitable adaptation law. Let   

be an estimate of the ideal vector *  and define the 
control law as the adaptive PID approximation of the 
ideal controller (13), i.e., the control law for system (1) 
is chosen as 

  T
pidu u e      (14) 

After the specification of the controller structure, the 
next step should be the design of an adaptive law for the 
free parameters   such that the control law u  
approximates, as best as possible, the implicit ideal 

controller *u . To this end, a gradient descend 
adaptation algorithm will be developed in the next 
subsection. 
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B. Adaptation law for PID control 

Our goal in this subsection is to design an adaptive 
algorithm for the parameter estimates   such that the 
PID controller (14) approximates the unknown ideal 
controller (13), i.e., the adaptive algorithm should be 

designed to make the error between *u  and u  as small 
as possible. Furthermore, the adaptive law should 
guarantee the boundedness of the parameters estimates. 
To this end, let us define the error between the 

controllers *u  and u  as: 

 *
ue u u    (15) 

The error ue  represents the actual deviation between the 

unknown function *u  and the control input pidu  . 

Using (14) and (13), (15) becomes 

where *     is the parameter estimation error 
vector. 

By invoking the mean value theorem, there exists a 
constant   with 0 1  , such that the nonlinear 

function  ,f ux  can be expressed around *u  as 

      * *, , uf u f u f u u


  x x   (16) 

where  ,u u u u
f f u u

 
 

  x with   *1u u u     . 

 
By substituting (17) into the error equation (7), we get 
 

 
 

    
0 0

* *

tanh

    ,u

s K s K s

f u u f u v


  

   



x
  (17) 

Using (9), (18) becomes 

    *
0 0tanh us K s K s f u u


       (18) 

which can be rewritten in the following form: 

    *
0 0tanh u u us K s K s f u u f e

 
       (19) 

We notice here that *u  is an unknown quantity, so the 

signal ue  defined in (15) is not available. Eq. (20) will 

be used to overcome this difficulty. Indeed, from (20), 

we see that even if the signal ue  is not available for 

measurement, the quantity, u uf e


, is measurable. This 

fact will be exploited in the design of the parameters 
adaptive law. 

Now, consider a quadratic cost function; that 
measures the discrepancy between the implicit ideal 

controller *u  and the actual PID controller pidu , 

defined as 

       
2 22 * *1 1 1

2 2 2
uJ e u u u e        (20) 

The gradient descent method is used here to minimize 
the cost function (21). Hence, by applying the gradient 
descent method [16, 19], we obtain as an adaptive law 
for the parameters  , the following first order 
differential equation 

    t J       (21) 

where  t  is a positive time-varying parameter. 

From (21), the gradient of  J   with respect to   is 

 
 

  u

J
e e






 


  (22) 

Therefore, the gradient descent algorithm becomes 

     ut e e     (23) 

The adaptive law (24) cannot be implemented since 

the signal ue  is not available. In order to render (24) 

computable, from Eq. (20), we select the design 

parameter  t  as   0 ut f   , where 0  is a positive 

constant. Thus, (24) becomes 

   0 u ue f e     (24) 

Using (20), we get 

     0 0 0tanhe s K s K s         (25) 

As shown in [20], the adaptive law (26) cannot 

guarantee the boundedness of the parameters   in the 
presence of approximation errors that are unavoidable 
in such adaptive schemes. So, to improve the robustness 
of the adaptive law (26) in the presence of 
approximation errors, we modify it by introducing a σ-
modification term as follows [20]: 

     0 0 0tanhe s K s K s            (26) 

where   is a small positive constant. We notice that 
the adaptive law is modified so that the time derivative 
of the Lyapunov function used to analyze this adaptive 
law becomes negative in the space of the parameter 
estimates when these parameters exceed certain bound 
[20]. 

C. Stability of the closed-loop system 

In order to analyze the tracking error convergence 
and the stability of the closed-loop system, let us 
consider the following Lyapunov-like function 

 2

0

1 1

2 2
V s  


      (27) 

The time derivative of (28) can be written as 

 *

0 0

1 1
V ss    

 
          (28) 

Using (19) and (27), (29) becomes 

 

  

0

0

*

0

tanh

1

u u

u u

s
V s Ks K f e

e f e







   


 

  
       

  

  



  

  (29) 

With (16), we can write  

 

  

2
0

0

*

0

tanh

1

u u

u u u

s
V Ks K s s f e

e f e







    


 

 
     

 

  



  x

  (30) 

or 
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 

2
0

0

*

0

tanh

1

u u u u u

u u

s
V Ks K s s f e e f e

f e

 





    


 

 
     

 

  



  x

  (31) 

Using inequalities 

 
2 2*

2 2

 
          (32) 

    2 21

4
u u u u uf e f e f
  

  x x   (33) 

 2 21

4
u u u u us f e f e f s      (34) 

equation (32) can be bounded as  

 

 

 

2 2
0

0

2 22* * 2

2
0

1
tanh

2

1

4 2

u u u

u

s
V f e K s K f s

f

 





 
   



 
     

 

   



  x

  (35) 

Since the parameters  * t  and  * t , the functions 

  x  and uf 
 are assumed bounded in this paper, so 

we can define a positive constant bound   as 

  
22* * 2

2
0

1
sup

2
u

t

f



   



 
   

 

 x   (36) 

Then, (36) can be simplified to 

 

 2 2
0

0

2

1
tanh

2

+ 
4

u u u

s
V f e K s K f s

 



 

 
     

 







  (37) 

Assuming that the design parameter K  is chosen 

such that 1K  , and   1 0min 2 ,0.5K     , 

the inequality (36) can be written as follows 

 

2 2
0

0

2

0

1
tanh

2 2

  
2

u u

s
V f e K s s








 



 
    

 

 





  (38) 

or, 

 V V      (39) 

Now we can prove the following theorem that shows 
the boundedness of all variables in the closed-loop 
system. 

 
Theorem 2: Consider the system (1). Suppose that 
Assumptions 1-3 are satisfied. Then the control law 
defined by (14) with the adaptation law given by (27) 
guarantees that the closed-loop system is UUB stable 
and the output tracking error converges to a small 
neighborhood of the origin. 
 
Proof : From (40), we can have 

    0 tV t V e  


    (40) 

Then from (41), it can be shown that for V    we 

have 0V  . According to a standard Lyapunov 

theorem, the signals  s t ,  t  and  u t  in the 

closed-loop system are bounded. Moreover, from (28) 
and (41) we can write 

     
22 0.5

0

1 2
0 0 ts t s e  


 

   , and in order 

to achieve the tracking error convergence to a small 
neighborhood around zero, the parameters K ,   and 

0  should be chosen appropriately. Then, it is possible 

to make 
2


 as small as desired. Denotes 

2


  , 

since 0.5 0te   as t  , it exists T  such that 

 s t    for t T . This implies that the tracking 

errors converge to residual sets as:     12i i i ne t     , 

0, , 1i n   . This completes the proof. 

 
Remark 2: It is worth to notice that in the PID 
controller (14) there is no robustifying control term. In 

this paper, the term  0 0tanhK s   in the parameter 

adaptive law plays, in some way, the role of a 
robustifying term. Hence the robustness of the 
controller can be improved by selecting large positive 

values for the design parameters 0K . 

 
Remark 3: Because the aim of the σ-modification 
adaptive law (7) is to avoid parameter drift, it does not 
need to be active when the estimated parameters are 
within some acceptable bound. Therefore, a more 
reasonable modification would be to select   as [20]: 

0  , if M  , 0  , otherwise; where M  and 

0  are design positive constants, and  *

0

sup
t

M 


 . 

III. SIMULATION RESULTS 

In order to illustrate previous results, an application 
of the proposed control scheme to a SISO nonaffine 
system is displayer in the sequel. The nonaffine system 
is described by the following differential equation [18] 

    

 

1 2

2 3 2
2 1 20.15 0.1 1 sin 0.1

   

x x

x x u x u u

d t

 


    






   (41) 

where  d t  is an external disturbance included in order 

to test the robustness of the adaptive PID controller 
against external disturbances. 
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Desired

Actual

Let us define    1y t x t ,  1 2,x x


x , 

       2 3 2
1 2, 0.15 0.1 1 sin 0.1f u x u x u u d t     x . 

Then, the system given by (42) can be expressed as 

  ,y f u x   (42) 

which is in the input-output form given by 
Erreur ! Source du renvoi introuvable.. Such that, the 

nonlinear function  ,f ux  is assumed completely 

unknown, i.e., the control system does not require the 
knowledge of the system’s model as in conventional 
model-based adaptive controllers. In fact, the dynamic 
model of the system is only required for simulation 
purposes. 

The control objective is to force the system output 

   1y t x t  to track the desired trajectory 

     sin cos 0.5dy t t t  . The system initial 

conditions are    0 0.6,0.5


x , and the initial values 

of the parameter estimates  0  are set equal to zero. 

The design parameters used in this simulation are 

chosen as follows: 015,  5,  40K K    , 0 0.01  , 

0 5  , and 0.02  . A Gaussian white noise with 

mean zero and variance 0.02 is added to the 
measurement 1y x . 

Within this simulation, the unknown ideal implicit 
controller is approximated by a PID controller in the 
form of Erreur ! Source du renvoi introuvable. with 
an adaptive law in the form of 
Erreur ! Source du renvoi introuvable.. The desired 
and actual outputs are illustrated in figure 1. The control 
input signal is shown in figure 2, and the evolution of 

the gains pK , IK  and dK  are given in figures 3, 4 and 

5, respectively. We can note that the actual trajectory 
converges to the desired trajectory, the control signal is 
almost smooth and the parameter estimates are bounded. 
These simulation results demonstrate the tracking 
capability of the proposed adaptive PID controller and 
its effectiveness for control tracking of uncertain 
nonaffine nonlinear systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1.  Desired and actual outputs  

  Figure 2.  Control input signal 
 

Figure 3.  Evolution of the gains  pK  

 

Figure 4.  Evolution of the gains  IK  

 



International Workshop on Advanced Control, IWAC2014.     November, 3rd-4th 2014, Guelma, Algeria 

75 
 

 
 
 

IV. CONCLUSION 

In this paper, we proposed a stable self-tuning PID 
control scheme for a class of SISO nonaffine nonlinear 
systems. The scheme consists of an adaptive PID 
controller with its adaptive law. The PID algorithm is 
used to construct adaptively an unknown ideal implicit 
controller, and its adjustable parameters are updated, by 
using the gradient descent method, in order to minimize  

the error between the unknown controller and the 
used PID controller. The proposed control scheme does 
not require the knowledge of the mathematical model of 
the plant, guarantees the boundedness of all the signals 
in the closed-loop system, and ensures the convergence 
of the tracking errors to a neighborhood of the origin. 
Simulation results show the good performances of the 
proposed controller. Future work will focus on 
improvement of the proposed controller by introducing 
a state observer to provide an estimate of the state 
vector. 

REFERENCES 

[1] Zhu, H., Li, L., Zhao, Y., Guo, Y., and Yang, Y., CAS 
Algorithm-based Optimum Design of PID Controller in AVR 
System, Chaos, Solitons and Fractals, 2009, vol. 42, no. 2, pp. 
792-800. 

[2] Ziegler, J.G., and Nichols, N.B., Optimum Settings for 
Automatic Controllers, Transactions of ASME, 1942, vol. 64, 
pp. 759-768. 

[3] Astrom, K.J., and Hagglund, T., PID Controllers: Theory 
Design and Tuning, Instrument Society of America, 1995. 

[4] Hjalmarsson, H., Gevers, M., Gunnarsson, S., and Lequin, O., 
Iterative Feedback Tuning: Theory and Applications, IEEE 
Control Systems Magazine, 1998, vol.18, vo. 4, pp. 26-41. 

[5] Lequin, O., Gevers, M., Mossberg, M., Bosmans, E., and Triest, 
L., Iterative Feedback Tuning of PID Parameters: Comparison 
with Classical Tuning Rules, Control Engineering Practice, 
2003, vol. 11, no. 9, pp. 1023-1033. 

[6] BAGIS, A., Determination of the PID Controller Parameters by 
Modified Genetic Algorithm for Improved Performance, 
Journal of Information Science and Engineering, 2007, 
vol. 23, no. 5, pp. 1469-1480. 

[7] Zhang, J., Zhuang, J., Du, H., and Wang, S., Self-organizing 
Genetic Algorithm Based Tuning of PID Controllers, 
Information Sciences, 2009, vol. 179, no. 7, pp. 1007-1018.  

[8] Coelho, L.D.S., Tuning of PID Controller for an Automatic 
Regulator Voltage System Using Chaotic Optimization 
Approach, Chaos, Solitons and Fractals, 2009, vol. 39, no. 4, 
pp. 1504-1514.  

[9] Toscano, R., and Lyonnet, P., Robust PID Controller Tuning 
Based on the Heuristic Kalman Algorithm, Automatica, 2009, 
vol. 45, no. 9, pp. 2099-2106. 

[10] Yusof, R., and Omatu, S., A Multivariable Self-tuning PID 
Controller, Internal Journal of Control, 1993, vol. 57, no. 6, 
1387-1403.  

[11] Chang, W.D., Hwang, R.C., and Hsieh, J.G., A Self-tuning PID 
Control for a Class of Nonlinear Systems Based on the 
Lyapunov Approach, Journal of Process Control, 2002, vol. 12, 
no. 2, pp. 233-242.  

[12] Ahn, K.K., and Truong, D.Q., Online Tuning Fuzzy PID 
Controller Using Robust Extended Kalman Filter, Journal of 
Process Control, 2009, vol.19, no. 6, pp. 1011-1023. 

[13] Chang, W.D., and Yan, J.J., Adaptive Robust PID Controller 
Design Based on a Sliding Mode for Uncertain Chaotic 
Systems, Chaos, Solitons and Fractals, 2005, vol. 26, no. 1, pp. 
167-175.  

[14] Mizumoto, I.,  Hirahata, T., Ohdaira, S., and Iwai, Z., Adaptive 
PID Controller Design Based on Output Feedback Passivity for 
Discrete-Time Nonlinear Systems, American Control 
Conference, ACC'2009, St. Louis, Missouri, USA, 2009, pp. 
4673-4679. 

[15] Mizumoto I., D. Ikeda, Hirahata T and Z. Iwai, Design of 
discrete time adaptive PID control systems with parallel 
feedforward compensator, Control Engineering Practice, vol. 
18, 168–176 

[16] Slotine, J.E., and Li, W., Applied Nonlinear Control, 
Englewood Cliffs, NJ: Prentice Hall, 1991. 

[17] S.S. Ge, J. Zhang, Neural-network control of nonaffine 
nonlinear system with zero dynamics by state and output 
feedback, IEEE Trans. Neural Networks 14 (4) (2003) 900–918. 

[18] J.-H. Park, G.-T. Park, S.-H. Kim, C.-J. Moon, Direct adaptive 
self-structuring fuzzy controller for nonaffine nonlinear system, 
Fuzzy Sets and Systems 153 (3) (2005) 429–445. 

[19] Labiod, S., and Guerra, T.M., Direct Adaptive Fuzzy Control 
for a Class of MIMO Nonlinear Systems, International Journal 
of Systems Science, 2007, vol. 38, no. 8, pp. 665-675. 

[20] Ioannou, P.A., and Sun, J., Robust Adaptive Control. Prentice 
Hall, Englewood Cliffs, New Jersey, 1996.  

 

Figure 5.  Evolution of the gains  dK  

 


