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Abstract - Simultaneous localization and mapping (SLAM) is vital for autonomous robot navigation. The robot must build a map of its 
environment while tracking its own motion through that map. There are many ways to approach the problem, mostly based on the 
sequential probabilistic approach, based around extended Kalman filter (EKF) or the Rao-Blackwellized particle filter. In order to 
improve the SLAM solution and to overcome some of the (EKF) and (PF) limitations, especially when the process and observation 
models contain uncertain parameters, we propose to use a robust approach to solve the SLAM problem based on variable structure 
theory. The new alternative called Smooth Variable Structure Filter (SVSF) is a predictor corrector estimator based on sliding mode 
control and estimation concepts. It has been demonstrated that the (SVSF) is stable and very robust face modeling uncertainties and 
noises. Visual SVSF-SLAM is implemented, validated and compared with EKF-SLAM algorithm. The comparison proofs the efficiency 
and the robustness of localization and mapping using SVSF-SLAM. 
 
Index Terms - Mobile navigation; filtering; SLAM; EKF;  SVSF. 
 

I. INTRODUCTION 

The ability of a mobile robot to localize itself is critical to 
its autonomous operation and navigation. A robot that 
navigates using maps must be able to accurately localize itself. 
Consequently, there has been considerable effort on the 
problem of mobile robot localization and mapping. This 
problem is known as simultaneous localization and mapping 
SLAM and there is a vast amount of literature on this topic [1], 
[2], [3]. 

SLAM is a technique used by mobile robots to build a map 
of an unknown environment while simultaneously tracking its 
own motion. This presents a chicken and egg situation: an 
accurate map is necessary for localization, and accurate 
localization is necessary to build a map. The interdependency 
between the estimates of the robot location and the map of the 
environment makes SLAM an interesting and difficult research 
problem. There are many ways to approach the problem, 
mostly based on the sequential probabilistic approach, based 
around extended Kalman filter (EKF) [4] or the Rao-
Blackwellized particle filter [5].  

The use of the classical solution to SLAM based on the 
Extended Kalman Filter EKF-SLAM, displays several 
shortcomings such as quadratic complexity and sensitivity to 
false associations, problems due to the employment of 
linearized models of nonlinear motion and observation models 
and so inherits many caveats[2]. Nonlinearity and errors 
modeling can be a significant problem for EKF-SLAM and 

leads to inevitable and sometimes dramatic inconsistency in 
solutions, further the assumption of Gaussian additive noise is 
often violated, which affects the vehicle and map state 
estimation and can lead to estimation process divergence. 
Convergence and consistency can only be guaranteed in the 
linear case with Gaussian additive noise. 

While EKF-SLAM and FastSLAM are the two most 
popularsolution methods, newer alternatives, which offer much 
potential, have been proposed, including the use of the 
unscented Kalman filter (UKF) proposed by Julier and 
Uhlmann in SLAM [6].Unlike the (EKF), the (UKF) uses a set 
ofchosen samples to represent the state distribution. The UKF-
SLAM avoids the calculation of the Jacobian and Hessian 
matrices but also obtain higher approximation accuracy with 
the unscented transformation (UT). However, for high-
dimensional systems, the computation load is still heavy; thus, 
the filter converges slowly. The cubature Kalman filter (CKF) 
based on a cubature transform which is more accurate and its 
complexity computation is lower than the one of the (UKF) 
was used in SLAM [7]. The State Dependent Riccati Equations 
(SDRE) nonlinear filtering formulation was also used with 
SLAM which avoids the linearization step [8]. 

However, the above filters are all based on the framework 
of the Kalman filter (KF); it can only achieve a good 
performance under the assumption that the complete and exact 
information of the process model and the noise distribution 
which has to be known as a prior. But in practice, the prior 
noise statistic is usually unknown totally, and the process and 
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observation models may be not well known or contain 
modeling uncertainties, thus, the state estimation will have 
large errors, or, even, the filters will be possible to diverge. 

To overcome some of these limitations, we propose to use 
the (SVSF) filter to solve the SLAM problem. Introduced on 
2007, the smoothing variable structure filter (SVSF) is 
relatively a new filter [9]. It is a predictor correct estimator 
based on sliding mode control and estimation concepts. In its 
old form, the (SVSF) is not a classical filter in the sense that it 
does not have a covariance matrix. Mostly used for state and 
parameter estimation of dynamic system whether linear or 
nonlinear, accurate fault detection and estimation [10] and 
tracking applications [11], it has been demonstrated that the 
(SVSF) is extremely robust and stable to modeling 
uncertainties and noise [9], [12]. 

In this work, we describe our efforts to investigate an 
alternative to the (EKF) based data fusion. This alternative uses 
the (SVSF) as a fusion filter for SLAM problem. We propose a 
smoothing variable structure filter (SVSF) implementation of 
SLAM algorithm using both robot wheel encoders and stereo 
vision system. Our motivations behind solving the SLAM 
problem using the (SVSF) is to overcome some (EKF) 
limitations and to offer more robustness and stability and less-
cost computation to the robot pose and map estimation. We 
first give an overview of the motion model of our robot and the 
observation model used and also a description of the EKF-
SLAM algorithm is presented. We give a summering of the 
(SVSF) estimation process, and then we explain how the 
(SVSF) is used to solve the SLAM problem with the derivation 
of some equations. We then showcase some simulation results 
from our implementation applied to theoretical datasets. 
Finally, we draw some conclusions, some final remarks and 
perspectives. 

II. ROBOT MOTION AND STEREO VISION SENSOR MODELS 

A. Process Model 

We proceed to model the movement of the robot and the 
noise associated with it. We assume that the robot is operating 
in planar environments Fig. 1, whose kinematic state, or pose, 
is summarized by three variables (1): 

� = (�� �� �)� .                                  (1) 

Fig. 1 Robot configuration (Pionner 3-AT). 

Where T is the sample period, we assume that the robot is 
controlled by two velocities: a translational velocity �� and a 
rotational velocity w� at sample �. We note the control input at 
sample �  by �� = (�� ��)� . With this control input and the 

location of the robot at the previous time step we can estimate 
the robot’s current location according to (2) 

�

��(� + 1)
��(� + 1)

�(� + 1)
� = �

��(�) + ������(�)�

��(�) + ������(�)�

�(�) + ���

�                 (2) 

���� = �(��, ��).                                  (3) 

The model (2) states the kinematic for an ideal, noise-free 
robot. In reality, robot motion is subject to noise, slip or lift. 
The actual velocities differ from the measured ones by 
odometer sensor. We will model this difference by a random 
variable, let: 

��� = �� + �� = �
��

��
� + �

��

��
�.                            (4) 

The measured velocity equals the true velocity plus some 
small, additive error (noise) �� = (�� ��)�[4]. 

B. Observation Model 

In order to execute SLAM the robot needs to be able to 
choose and track appropriate reference or landmarks in the 
environment to localize itself. These landmarks must be stable 
and invariant.  

In this work, we opt for a point landmark approach, where 
the map is a collection of 3D landmark locations. So, how to 
obtain relative measurement of the landmarks from the images 
acquired from the stereo vision sensor? 

Since we use a stereo vision sensor (two synchronized 
cameras), the landmarks are as primary visual features (corners, 
edges…), which must be extracted fromtheacquired images 
over the time. In the literature several techniques to extract 
robust features from image, the two most well-known are: the 
scale invariant feature transform (SIFT) [13] and speeded-up 
robust features (SURF) [14], then matching operation is done 
between the visual features extracted in the right and left 
images. Ones the matching operation is done, the visual 
features are triangulated to 3D. So the relative measurement 
delivered by the stereo vision sensor is the 3D coordinates of 
the landmarks with respect to the robot Fig. 2.  

 

Fig. 2 Stereo vision system geometry. 

To validate in simulation the SVSF-SLAM algorithm, we 
will not use real data, instead of this, theoretical datasets (a set 
of 3D points) previously generated will be used. When the 
robot is moving, it detects landmarks (3D points) that are 
included in the vision sensor field Fig. 3.  
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Fig. 3 Sensor vision field. 

As said previously, the stereo vision sensor provides 
relative measurement  � = (��

� ��
� ��

� )�  of the landmarks 
with respect to the robot frame, this measurement (observation) 
will be noted �.   

The model representing the robot frame coordinates of an 
individual landmark according to its global frame coordinates 
�� = ���

�
��

�
��

�
� and the robot configuration � is called the 

direct model observation and will be noted: 

� = ℎ(�, ��).                                        (5) 

� = ��� �

��
�

− ��

��
�

− ��

��
�

�                                   (6) 

We denote ���the global to robot projection matrix: 
 

��� = �
cos  (�) sin (�) 0

−sin (�) cos  (�) 0
0 0 1

�                        (7) 

In reality the observation (measurement) is subject to noise. 
The real observation model is given in the following model: 

�� = ℎ(�, ��) + ��.                                 (8) 

Where �� = (�� �� ��)� is the measurement noise. 

C. Inverse Observation Model 

Regarding the dynamic nature of the SLAM algorithm, new 
observed landmark must be initialized prior to be added to the 
state vector [6]. The initialization process is in fact the best 
estimation of the landmark position, and it is a fundamental 
point to SLAM implementation. 

The observation model stated in (6) gives three equations 
for three dimension variable ��. The 3D coordinates of a new 
landmark���

�
��

�
��

�
� with respect to the global framework 

are initialized by solving (5) as follows: 

�� = ℎ��(�, �).                                   (9) 

�� = (���)��� + �.                            (10)  

III. OVERVIEW OF THE EKF-SLAM ALGORITHM 

Our mobile robot is equipped with an odometer sensor 
providing dead reckoning data, and a stereo vision system 
providing images of the environment. The odometer sensor 
may consist of standard wheel encoders attached to the driving 
wheels of the mobile robot. 

The classical solution to SLAM is based on the Extended 
Kalman Filter EKF-SLAM. It assumes a robot moving in a 
world with stationary landmarks, the latter being distinctive 
physical features that can be observed by some sensor (in our 
case the stereo vision system). 

We base our approach to the EKF-SLAM algorithm on the 
method stated in [4]. Our approach is similar in concept; the 
main difference is that we changed the way in which the 
measurements are handled. We found that it is easier to work in 
Cartesian coordinates when working with images features, 
while Thrun et al. [4] use polar coordinates. 

The (EKF) executes SLAM by including the locations of 
landmarks in the state vector. Motion and measurement 
equations are linearized, and motion and measurement noise 
are approximated with Gaussians, enablingthe use of the 
normal Kalman filter equations on a non-linear system.  

The positions of the landmarks (the map) along with the 
robot’s position at a particular time are considered to be the 
system state. The problem consists of estimating the new state 
(robot and landmark positions) at the next time instant given 
the last movement made by the robot and new observations 
provided by the stereo vision sensor. 

The last movement is usually estimated through odometer 
(wheel encoders). On the other hand, the stereo vision sensor 
gives images from the environment. By processing the acquired 
images, we obtain relative measurement (the 3D coordinates of 
landmarks with respect to the robot). The estimation process 
consists of using the (EKF) to fuse the relative measurements 
and the odometer data in a way that enables robust map-
building and localization Fig. 4. 

 Fig. 4 Sketch of the SLAM algorithm. 

The EKF-SLAM algorithm can be divided into two parts: a 
control update (prediction) where the robot motion is predicted 
and measurement update using the landmarks observation. As 
the EKF-SLAM is not the main objective of this work, for 
more details refer to [3], [4].  

IV. THE SMOOTH VARIABLE STRUCTURE FILTER 

A new form of predictor-corrector estimator based on 
sliding mode concepts referred to as the variable structure filter 
(VSF) was introduced in 2003 [15]. Essentially this method 
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makes use of the variable structure theory and sliding mode 
concepts. It uses a switching gain to converge the estimates to 
within a boundary of the true state values (i.e., existence 
subspace shown in Fig. 5). In 2007, the smooth variable 
structure filter (SVSF) was derived which makes use of a 
simpler and less complex gain calculation [9], [12].  

The (SVSF) has been shown to be stable and robust to 
modeling uncertainties and noise, when given an upper bound 
on the level of un-modeled dynamics and noise. 

The (SVSF) method is model based and may be applied to 
differentiable linear or nonlinear dynamic equations. The 
original form of the (SVSF) as presented in [9] did not include 
covariance derivations. An augmented form ofthe (SVSF) was 
presented in [16], which includes a full derivation for the filter 
using covariance matrices. 

The basic estimation concept of the (SVSF) is shown in 
Fig. 5. Some initial values of the estimated states are made 
based on probability distributions or designer knowledge. An 
area around the true system state trajectory is defined as the 
existence subspace. Through the use of the (SVSF) gain, the 
estimated state will be forced to within this region. Once the 
value enters the existence subspace, the estimated state is 
forced into switching along the system state trajectory. A 
saturation term may be used in this region to reduce the 
magnitude of chattering or smooth-out the result. 

 
Fig. 5 The SVSFestimation concepts [9]. 

 

The estimation process is iterative and may be summarized 
by the following set of equations (for control or estimation 
problem)[9], [16]. Like the KF, the system model is used to 
calculate the a priori state as follows: 

����� �⁄ = ����� �⁄ , ���.                               (11) 

Utilizing the predicted state estimates X���� �⁄  , the 
corresponding predicted measurements Z��� �⁄  and 
measurement errors E�,��� �⁄  may be calculated: 

����� �⁄ = ℎ(����� �⁄ ).                                  (12) 

��,��� �⁄ = ���� − ����� �⁄ .                        (13) 

The (SVSF) process differs from the (KF) in how the gain 
is formulated. The (SVSF) gain (14) is a function of the a priori 

and the a posteriori measurement error ����� �⁄
 and ��� �⁄

 , the 

smoothing boundary layer widths  � , the memory or 
convergence rate matrix � given by user (with 0 ≤ ��� ≤ 1), as 
well as the linearzed measurement matrix �.  

The (SVSF) guarantees bounded-input bounded-output 
(BIBO) stability and the convergence of the estimation process 
by using the Lyapunov stability condition. The derivation of 
the (SVSF) gain and its stability conditions can be found in [9], 
[12].The (SVSF) gain matrix is defined as: 

���� = �� ���� �����,��� �⁄ �
���

+

                  ����,� �⁄ �
���

� °����������,��� �⁄ �� �����(��,��� �⁄ )�
��

(14

) 

Where ° signifies Schur (or element-by-element) 
multiplication, the superscript + refers to the pseudo inverse of 
a matrix and ����  is a diagonal matrix constructed from the 
smoothing boundary layer vector �, such that: 

���� = [����(�)]�� = �

�

��
0 0

0 ⋱ 0

0 0
�

��

�                 (15) 

Note that � is the number of measurements, the saturation 
function of (14) is defined by: 

����������,��� �⁄ � = �

1, ���,��� �⁄ ��⁄ ≥ 1

���,��� �⁄ ��⁄ , −1 < ���,��� �⁄ �� < 1⁄

−1, ���,��� �⁄ ��⁄ ≤ −1

(16) 

The gain is used to calculate the update state 

estimates ���� ��⁄ � : 

����� ��⁄ � = ����� �⁄ + ������,��� �⁄ .             (17) 

Finally, the update measurement estimate Z��� ���⁄  and 
measurement errors E�,��� ���⁄  are calculated, and are used in 
later iterations: 

���� ���⁄ = ℎ(����� ���⁄ ).                         (18) 

     ��,��� ���⁄ = ���� − ����� ���⁄ .                 (19) 

Note that the process estimation needs to be initialized 
such: 

�� �⁄ = ��

��,� �⁄ = ��,�
                                    (20)  

Two critical variables in this process are the a priori and a 
posteriori measurements (output) error estimates, defined by 
(13) and (19). Note that (19) is the a posteriori measurement 
error estimates from the previous time step, and is used only in 
the gain calculation. 

The selection of the smoothing boundary layer width vector 
�  reflects the level of uncertainties in the filter and the 
disturbances (i.e., system and measurement noise, and 
uncertain parameters). 

V. THE SVSF-SLAM ALGORITHM 

The SVSF-SLAM algorithm applies the (SVSF) to solve 
the SLAM problem. In doing, the (SVSF) differs from the 
(EKF), since the (SVSF) is not subject to the Gaussian noise 



International Workshop on Advanced Control, IWAC2014.                                             November, 3rd-4th 2014, Guelma, Algeria 

 

Advanced Control laboratory, Faculty of Sciences and Technology University of Guelma, Tél/Fax: +213 (0) 37 20 33 48       89 
 

assumption for the robot motion and the observation model as 
the (EKF) and doesn’t use covariance matrices. 

In addition to estimating the robot pose  � , the SVSF-
SLAM algorithm estimates the coordinates of the landmarks 
observed along the way. For convenience, we will call the state 
vector comprising robot pose and the map the combined state 
vector, and denote this vector y�. The combined vector is given 

by �� = �����,��
�
. Where �� = (��

� ��
� ��)� is the robot 

pose at time  � , ��,� = (��
�,�

��
�,�

… ��
�,�

)�  is the map vector 
containing the entire landmarks coordinate at time �, � is the 

number of the current landmarks, and ��
�,�

= (��,�
�,�

��,�
�,�

��,�
�,�

)�  is 

the ��� landmark coordinates in the map vector at time k. 

As the robot moves, the state vector changes according to 
the standard noise-free kinematic model (2), (3). In SLAM this 
motion model is extended to the augmented state vector: 

���� = �(��, ��) = �
�(��, ��)

��,� �                  (21) 

Only the first three elements are updated with control input. 
Landmarks supposed fix, remain where they are. 

In our approach, we obtain at each sample �a set of m 
observations denoted by  �� = (��,� , ��,�, … , ��,�)� , where 
each observation z�,� consists of the robot frame coordinates of 
the observed landmark.  

The observation model of SVSF-SLAM algorithm is 
deduced from (5): 

��,� = ℎ(��) = ℎ���,�� = ℎ(��, ��
�,�

).            (22) 

Where � is the index of an individual landmark observation 
in Z�, and � is the index of the observed landmark at time �. 

Even the (SVSF) process requires linear observation model, 
the non-linear observation function ℎ is approximated using a 
first degree Taylor expansion [12]: 

ℎ���,�� = ℎ ��
�,�

� + ��
�
(��,� − ���,�).              (23) 

Here ��
�
 is the derivative of h with respect to the full state 

vectory�. Since h depends only on two elements of state vector, 

the robot pose �� and the location of the ��� landmark ��
�,�

, we 

can write ��
�
as follows: 

��
�

= ℎ�
�

��,�.                                       (24) 

Here ℎ�
�

 is the Jacobian of ℎ  at �
�

, the mean of  �� , 

calculated with respect to the state variables �� and ��
�,�

. 

��,� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

0 … 0
0 … 0
0 … 0
0 … 0
0 … 0
0 … 0���
����

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

0 … 0
0 … 0
0 … 0
0 … 0
0 … 0
0 … 0���
�����⎦

⎥
⎥
⎥
⎥
⎥
⎤

           (25) 

The execution procedure of the SVSF-SLAM algorithm can 
be divided into three major steps: 

A) Initialization 

In SLAM, the initial pose is taken to the origin of the 
coordinate system. Using the inverse observation model (10) 
we can initialize thefirst landmarks. As a result we obtain the 
first state vector �

�
.The SVSF-SLAM algorithm requires also 

the initialization of the a posteriori measurements (output) error 
vector ���. 

�
�

= ���� ���
�,�

���
�,� , … , ����

�,�
�

�
. 

��� = ����
� ���

� , … , ���
���

�
. 

Where ��� = (0  0  0 )�  and ��  is the number of initial 
landmarks. 

B) Control update 

1.  ����� = �(�
�

, ���). 

C) Measurement update 

2.  For all landmarks observations z���,�. 

3.  �̂���,� = ℎ(�����) = ℎ(�����, ��
�,���

). 

4.  If landmark j is seen before (correspondence found) 

5.  ������ = ����,� − �̂���,�. 

6.  (����
�

)� = (��,�)�(ℎ���
�

)�. 

7.     ���� =     (����
�

)����� ����������
���

  +

                                �����
� �

���
� °������ ���������� �����(������)�

��
 

8.  ����� = ����� + ����������,�. 

9.  �����
� = ����,� − ℎ(�����, ��

�,���
). 

10. End If 

11. Use (10) to initialize the new landmark����
�,�

. 

12.  Add ����
�,�

 to the system state vector �����. 

13. Use (19) to initialize the a posteriori measurement error 

of the new landmark �����
��� . 

14. Add �����
���  to the a posteriori measurement error 

vector �����. 

15. � = � + 1% the total number of current landmarks. 

16. End For 

17.  �
���

= �����. 

18. Return �
���

, �����. 

 

Where � is the index of an individual observation in ���� 
and � is the index of its associated landmark in the system state 
vector. 

Note that only the observation model is linearized, there is 
no need to linearize the motion model as in (EKF) estimation 
process. Another important remark in the SVSF-SLAM 
estimation process is that, for each observation ����,�, only the 
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robot pose ����  and the observed landmark ��
�,���

 will be 
updated, while in EKF-SLAM we update the entire system 
state vector ����. 

The width of the smoothing boundary layer vector � can be 
a function of the upper bound of uncertainties-modeling and 
noise, the process estimation accuracy depends on the value of 
� used [9], [12]. 

In our work, motion model will be supposed well known, 
while the observation model will be supposed containing some 
modeling errors ∆ℎ, so the vector � will depend on the priori 
knowledge of the upper level of motion and observation 
noise |��|��� ,|��|��� and |∆ℎ|���[9].  

VI. SIMULATION  

A. Simulation Environment 

We created the environment with the aim of simulating 
thereal world without it being unnecessarily complicated. We 
opted for a circular trajectory with landmarks on the robot way. 
At each time step an input command is generated and stored to 
be used in the SLAM simulations but, before the robot executes 
the command, we add to it some noise to simulate the 
uncertainty. 

As the robot moves through the environment, landmarks in 
the robot’s field of view are included in the measurement � at 
every time step. Then we add noise to the measurements 
coordinates vector �. 

In order to verify the efficiency of the SVSF-SLAM 
comparing with the EKF-SLAM, some different simulations 
were done with different environment noise. Suppose that the 
observation noise obeys the mixture Gauss distribution 
as ��~0 .5�(0 , ��) + 0 .5�(0 , ��). 

�� = �

(0 .1)� 0 .001 0 .002

0 .001 (0 .1)� 0 .001

0 .002 0 .001 (0 .1)�

� , �� = �
0 .002 0 .01 0 .02
0 .005 0 .002 0 .01
0 .01 0 .005 0 .002

�(26) 

And the motion noise obeys to Gauss distribution 
as ��~�(0 , �). 

� = �
0 .02 0 .001

0 .001 0 .01
�                                   (27) 

The width of the smoothing boundary layer vector φ used 
is: 

� = (21 21 15)�                                 (28) 

B. Simulation Results 

To illustrate the solution of the SVSF-SLAM comparing 
with the EKF-SLAM solution, we present the followings 
results. First, consider Fig.6 and Fig. 7, which show the result 
of EKF-SLAM and SVSF-SLAM respectively after the robot 
has traveled along the real trajectory. 

In the both case, the SLAM algorithm builds a map 
consisting of landmarks, which are marked as circles/squares in 
the figures. The red path (odometry only) is obviously 
incorrect. On the other hand the SVSF-SLAM corrected path is 
consistently following the reference path butter than that of the 
EKF-SLAM Fig. 8. From figures Fig. 9 and Fig. 10, we learn 

that the root mean square error (RMSE) values of the map and 
the robot position estimation of the SVSF-SLAM algorithm is 
smaller than that of the EKF-SLAM until sample 580, in which 
we see in the case of EKF-SLAM that there is a sudden 
reduction of the RMSE values compared with the SVSF-
SLAM because the robot has observed landmarks already seen 
(the loop closing appearance); so we can note that the SVSF-
SLAM algorithm accuracy is better than that of the EKF-
SLAM. We can also see that the robot pose and the map 
estimation RMSE in the case of the SVSF-SLAM are nearly 
limited. 

 

Fig. 6 EKF-SLAM simulation results. 

 

Fig. 7 SVSF-SLAM simulation results.

 

Fig. 8 Comparison of the simulation results with EKF-SLAM and SVSF-

SLAM. 
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Fig. 9 Robot pose estimation RMSE. 

 

Fig. 10 Map estimation RMSE. 

 
Finally, consider Fig. 11 which shows the increasing of 

computation time of the EKF-SLAM which is quadratic in �, 
the number of the current landmarks in the map. In the other 
hand the SVSF-SLAM time computation is limited and nearly 
constant, since the algorithm update for each measurement only 
the robot state and the correspond landmark position. 

 

Fig. 11 Comptuation time. 

VII. CONCLUSION 

In this work, we have developed and implemented a 
smoothing variable structure filter SLAM algorithm, which is 
based on 3D observation and odometer. The novel SLAM 
algorithm based on the (SVSF) estimator doesn’t require 
covariance matrices. It was proposed in order to solve the 
problem of the unknown noise statistic characteristics of the 
system in real world and to deal with the parameters 
uncertainties and linearization errors. The SVSF-SLAM 
algorithm enables less complex correction gain and low-cost 
computation and robust navigation given the upper bound of 
the uncertainty-modeling and noise. It allows more stability 
and accuracy estimation comparing with EKF-SLAM 
algorithm.  

As future work, we expect to use the (SVSF) filter in its 
new form using matrices covariance to evaluate the uncertainty 
of the estimation and also using the (SVSF) with optimal 
(adaptive) smoothing boundary layer vector to solve the SLAM 
problem. 
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