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Abstract – In this paper, direct adaptive backstepping control with tuning functions approach for a single-link flexible-
joint robot model is proposed. The proposed approach of adaptation is based on the tracking error based parameter 
adaptation law. First, the direct adaptive backstepping control with tuning functions is applied for a class of nonlinear 
systems in parametric strict-feedback form to avoid overparametrization. Next, the main steps of the controller design for 
a single-link flexible-joint robot manipulator model are described. The stability of the proposed controller is studied by 
using the Lyapunov functions. Finally, the simulation results are given to demonstrate the performance of the proposed 
approach. 
 
Index Terms – Single-link flexible-joint robot, backstepping control, direct adaptive control, tuning functions, direct 
adaptation. 
 
 
 

I. INTRODUCTION 

Backstepping [1-2] is a recursive design procedure for 
systematically selecting the control Lyapunov function 
that allows the design of nonlinear controllers for 
nonlinear systems in strict-feedback form. The idea of 
backstepping is to design a controller recursively by 
considering some of the state variables as virtual 
controls and designing for them intermediate control 
laws. 
Adaptive backstepping is a nonlinear control design 
technique that has been developed in [3] as an 
alternative method for the adaptive control of the 
nonlinear systems, which achieves boundedness of the 
closed-loop states and convergence of the tracking error 
to zero. This technique achieves the control of nonlinear 
systems with parametric uncertainties, these 
uncertainties consist of unknown constant parameters 
which appear linearly in the system equations.  
The adaptive backstepping design employs more than 
one estimate per unknown parameter. This 
overparametrization makes the control law complicated 
and difficult to implement. The tuning functions are 
introduced to reduce the dynamic order of the adaptive 
controller to its minimum. The number of parameter 
estimates is equal to the number of unknown parameters 
[1-2]. 
The adaptive backstepping control method proposed in 
this paper is a direct adaptive backstepping control with 
tuning functions method where controller parameters 
are updated by the tracking error where the parameter 
adaptation law is driven by tracking error to achieve 

better parameter estimation and hence better tracking 
performance. 
During the last years, the study of the control of robots 
manipulators with flexible joints drew a considerable 
attention [4-5]. The backstepping control design 
procedure has been used for synthesizing adaptive 
controllers for a class of flexible-joint robotic 
manipulators. 
In this paper, we propose a parameter adaptation law 
that is based on the tracking error based adaptation law. 
The stability of the proposed controller is studied by 
using the Lyapunov stability theorem and the simulation 
results are given to demonstrate the performance of the 
proposed controller.  
The paper is organized as follows. In section II, a 
dynamic nonlinear model for a single-link flexible-joint 
robot is described. Based on this nonlinear model, direct 
adaptive backstepping control with tuning functions is 
designed, and the closed-loop stability analysis is 
carried out in section III. Simulations results showing 
the good performance of the proposed controller are 
presented in section IV. In section V, some conclusions 
close the paper. 

II. DYNAMIC MODELING OF A SINGLE-LINK FLEXIBLE-
JOINT ROBOT 

The single-link flexible-joint robot dynamic model is 
given as follow [4, 6-7] 

   

 
1 1 1 1 2

2 2 1 2

sin 0J q MgL q K q q

J q K q q u

   

  




                        (1)                               
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where u  is the input torque. 1J  and 2J  are the inertias 

of the link and the motor, respectively. M  is the link 
mass and g  is the gravity. L  is the link length and K  

is the stiffness. 1q  and 2q  are the angular position of 

the link and the motor shaft, respectively. The single-
link flexible-joint robot is presented schematically in 
Fig. 1.  

 

Fig. 1. Single link flexible joint robot. 

Let the state variables defined as follows: 1 1x q , 

2 1x q  , 3 2x q  and 4 2x q  , and its dynamic model 

becomes 

 

 

1 2

2 1 1 3 1 3

3 4

4 2 1 3 2

,
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x x

x f x x g x

x x

x f x x g u



 



 









                                                (2) 

with 
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1 1 1

2 1 3 1 3 2
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, sin ,

1
, ,

MgL K K
f x x x x g

J J J

K
f x x x x g

J J

   

  

            (3)  

III. DIRECT ADAPTIVE BACKSTEPPING CONTROL WITH 

TUNING FUNCTIONS 

The approach by tuning functions is developed in [1-2] 
to avoid the problem of overparameterization and the 
adaptation laws differentiations as a new form of 
adaptive backstepping control. The principal advantage 
is that the number of parameter estimates is minimal, 
that is equal to the number of unknown parameters [1]. 
The proposed approach of adaptation is based on the 
tracking error based parameter adaptation law.  

Let us consider the 4
th

 order nonlinear system [8-9] 
given by 

1 2x x                                                                         (4) 

2 2 3 2 1 2 2 1 2( , ) ( , )
T

x b x x x f x x   
                          

(5)
 

3 4x x
                                                                        

(6)
 

4 4 4 1 2 3 4 4 1 2 3 4( , , , ) ( , , , )
T

x b u x x x x f x x x x   
     

(7)
               



where, the parameter vector 
p

   is unknown and 

constant. The nonlinear functions :
i

if    and 

:
i p

i    ( 1, , 4i   ) are known, and the control 

gains ib  are known. The control objective is to achieve 

the asymptotic tracking of a reference signal ry  by 1x . 

The reference signal ry  and its derivatives  4
, ,r ry y   

are assumed piecewise continuous and bounded.  In the 
following, we describe the main steps of the controller 
design for the single-link flexible-joint robot model. 

Step 1: We consider the first subsystem (4), the state 

variable 2x  is treated as a virtual control variable and 

we define the first desired value 1 0d rx y  . The 

first error is defined by 1 1 0e x   , and its time 

derivative is given by              

1 1 0 2 0e x x      
                                                

(8)

We consider the following Lyapunov function 

2
1 1

1

2
V e

                                                                     
(9)

 

The derivative of the Lyapunov function is given by 

   1 1 1 1 2 0 1 2 1 0V e e e x e e                        (10)                                

where 2 2 1x e   . In order to ensure the stability of 

the first subsystem described by equation (4), we take 

the desired value of 2x , the function 1 , such as    

1 2 1 1 0dx k e     
                                               

(11)

where 1 0k  . The derivative of the Lyapunov function 

becomes   

2
1 1 1 1 2V k e e e  

              
                                         (12)  

Step 2: We consider the subsystems (4) and (5), and we 

define the error 2 2 1e x   , and rewrite the equations 

of the system in the space
 
 1 2,e e  as follows   

1 2 1 0e e    
                                                       

(13) 

2 2 3 2 1 2 2 1 2 1( , ) ( , )
T

e b x x x f x x                       (14)                      

We take as the Lyapunov function 

2 1
2 1 2

1 1

2 2

T
V V e  


    

                                       
(15) 
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where ˆ   
 
is the estimation error that appears in 

(5). One computes 1  analytically 

1 1 1
1 1

1

1 1 1
2

1

   

r r

r r

r r

r r

x y y
x y y

x y y
x y y


  

  

  
  
  

  
  
  

   


 


                                       

The derivative of the Lyapunov function is given by 

 

1
2 1 2 2

2
1 1 2 1 2 3 2 2 2 1 2 2 1 2

11 1 1
2 2

1

ˆ   ( , ) ( , )

ˆ   

T

T

T
r r

r r

V V e e

k e e e b e b x x f x x

x y y
x y y

 

  

  
  





   

      

  
      
   

   

 


(17) 

where 3 3 2x e    and the tuning function 2  is 

defined as  

2 2 1 2 2( , )x x e  
                                                    

(18) 

In order to ensure the stability of both subsystems 
described by equations (4) and (5), we take the desired 

value of 3x , the function 2 , such as    

1
2 2 2 1 2 1 2 2 1 2 2

2 1

1 1

1 ˆ( , ) ( , )

   

T

r r

r r

k e e x x f x x x
b x

y y
y y


  

 


     



 
 
 







 


 (19)  

where 2 0k  . The derivative of the Lyapunov function 

becomes   

 2 2 1
2 1 1 2 2 2 2 3 2

ˆT
V k e k e b e e   


       


         

(20)  

Step 3: We consider the subsystems (4), (5) and (6), and 

we define the error 3 3 2e x   , and rewrite the 

equations of the system in the space
 
 1 2 3, ,e e e as 

follows    

1 2 1 0e e     
                                                       

(21) 

2 2 3 2 2 2 1 2 2 1 2 1( , ) ( , )
T

e b e b x x f x x       
     

(22)               

3 4 2e x  
                

                                              (23) 

The Lyapunov function considered here is 

2
3 2 3

1

2
V V e 

                                                           
(24) 

One computes 2  analytically 

2 2 2 2 2 2
2 1 2

1 2

2 2 2 2
2 2 3 2 1 2 2 1 2

1 2 2 2

2 2 2 2

ˆ
ˆ

( , ) ( , )

ˆ
ˆ

   

   +

r r r

r r r

T

r r r

r r r

x x y y y
x x y y y

x b x x x f x x
x x x x

y y y
y y y

     
 



   
 

   




   

 

 

     


     

   


   

   


   






     

 


  

 

    (25)                    

The derivative of the Lyapunov function is given by 



 

3 2 3 3

2 2 2 2
1 1 2 2 3 2 2 4 2 2 3

1 2

2 2 2 2
2 1 2 2 1 2
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 (26) 

where 4 4 3x e   and the tuning function 3  is 

defined as 

2
3 2 2 1 2 3

2

( , )x x e
x


  


 


                                    

(27)

 
In order to ensure the stability of both subsystems 
described by equations (4), (5) and (6), we take the 

desired value of 4x , the function 3 , such as   

2 2 2
3 3 3 2 2 2 2 3 2 1 2

1 2 2

2 2 2 2 2
2 1 2 3

2

ˆ+ ( , )

   ( , )
ˆ

T

r r r

r r r

k e b e x b x x x
x x x

f x x y y y
x y y y

  
  

    




  

 

  
 

  

    
  
    

  
 

(28)
             

 

where 3 0k  . The derivative of the Lyapunov function 

is reduced to   

 

 

2 2 2 2
3 1 1 2 2 3 3 3 4 3 3

1
3

ˆ
ˆ

ˆ   
T

V k e k e k e e e e


 


  





      


   





(29)  

Step 4: We consider the subsystems (4), (5), (6) and (7), 

and we introduce the error 4 4 3e x   , and rewrite 

the system equations in the space
 
 1 2 3 4, , ,e e e e  as 

follows   

1 2 1 0e e     
                                                       

(30) 

2 2 3 2 2 2 1 2 2 1 2 1( , ) ( , )
T

e b e b x x f x x             (31)               

3 4 3 2e e                                                           (32) 

4 4 4 1 2 3 4 4 1 2 3 4 3( , , , ) ( , , , )
T

ue b x x x x f x x x x       (33)              

We take as the Lyapunov function 
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2
4 3 4

1

2
V V e 

                                                           
(34) 

One computes 3  analytically 

3 3 3 3 3 3 3 3
3 1 2 3

1 2 3

3 3 3 3 3 3
2 2 3 2 1 2 2 1 2 4

1 2 2 2 3

3 3 3

ˆ
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T
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                                                                                   (35) 

The derivative of the Lyapunov function is given by 

4 3 4 4

2 2 2
1 1 2 2 3 3 4 4 4 1 2 3 4

3 3 3
4 1 2 3 4 2 2 3 2 1 2

1 2 2

3 3 3 3 3
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(36) 

Then, we take the control law as 

 

4 4 4 1 2 3 4 4 1 2 3 4

4

3 3 3 3
2 2 3 2 1 2 2 1 2

1 2 2 2

3 3 3 3 3 3
4 4

3

2
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ˆ

   ,
ˆ

T

T
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 3
4 1 2 3 4

2

, , ,x x x x
x




 
 

 

(37)  

Substituting the control law into 4V  gives 

 

   

   

 

 

2 2 2 2 3
4 1 1 2 2 3 3 4 4 4 4
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3 4
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T
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   4̂ 


(38)  

The new tuning function 4  is defined as  

   3
4 3 2 1 2 4 1 2 3 4 4

2

, , , ,x x x x x x e
x


    


 



 
 
 

(39) 

where 4 0k  . The update law is selected as  

   

2
4 2 1 2 2 2 1 2 3

2

3
2 1 2 4 4 1 2 3 4 4

2

ˆ ( , ) ( , )

   , , , ,

x x e x x e
x

x x e x x x x e
x


   


 

 

 


 

















      

(40)  

with the choice: 4̂ 


, the derivative of the Lyapunov 

function is reduced to 

2 2 2 2
4 1 1 2 2 3 3 4 4 0V k e k e k e k e     

                        
(41) 

This directly leads to the asymptotic stability of the 
errors of the closed-loop system. Barbalat’s lemma [10] 

can be used to show that 0V   as t  . Thus 1e , 

2e , 3e  and 4 0e   as t  . 

IV. SIMULATION RESULTS 

The single-link flexible-joint robot model used in this 
paper is given by (2) where the parameter values are 
given in Table. 1 [6]. 

Table 1. Single-link flexible-joint robot model parameters. 

Symbol Value Unit 
g 
M 
L 
J1 

J2 

K 

9,81 
1 

1 
0.4 
0.02 
100 

[m/s2] 
[kg] 
[m] 
[kg.m2] 
[kg.m2] 

[N.m/rad] 

For simulation, the unknown parameter   of the system 

is selected as MgL  . Our objective is to force the 

output of the system to follow the reference trajectory 

given by:
 

 0.1sindy t . The tuning functions 2 ,
 3  

and 4  are defined as  

2 1 2

1

sin( )x e
J




 

                                                   

(42)

 

2
3 2 1 3

1 2

sin( )x e
J x


 


 


                                      (43) 

3
4 3 1 4

1 2

sin( )x e
J x


 


 


                                      (44) 

where 0  . The stabilizing functions 1 ,
 2  and 3  

are given by  
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1 2 1 1 0dx k e     
                                               

(45)

  1
2 3 2 2 1 1 1 2

1 1 1 1

1 1

ˆ1
sin

    

d

r r

r r

K
x k e e x x x

g J J x

y y
y y




 


      



 
 
 









 


(46)       

 2 2 2
3 4 3 3 1 2 2 1 1

1 2 1 2 1

2 2 2 2 2
1 3 3

2

ˆ
sin

    
ˆ

d

r r r

r r r

K
x k e g e x x x

x x J x J

g x y y y
x y y y

  


    




  
     

  

    
    
    

  
 

(47)

The control law u  is given by 

   

 

3 3 3
4 4 3 1 3 2 4 1

2 2 1 3 2 1

3 3 3 3 3 3
1 1 3 4

2 1 2

3 32
3 1

1 1 2

ˆ1
sin

    
ˆ

    sin
ˆ

r r r

r r r

r

r

K
u k e e x x x x x

g J x x x J

K
x g x y y y

x J x y y y

y e x
y J x

   

     




 



  
       

  

     
     
     

  
 
  









  
 




(48) 

The update law
 
is given by    

32
4 1 2 3 4

1 2 2

ˆ sin( )x e e e
J x x


 


    

 

 
 
 



         

(49)

 
where 0  .  

The selected initial conditions are:  ˆ 0 0   and

 

   0 0.1 0 0.1 sin 0.1 0

T
MgL

x
K

 
 
  

. The 

design parameters are selected as follows: 1 1k  , 

2 5k  , 3 7500k  , 4 5k   and 0.015  .    

Simulation results are shown in figures 2 to 11. Figures 
2 to 5 show actual and desired trajectories of the angular 
position and velocity of the link and the motor shaft. 
Figures 6 to 9 show the trajectories of the tracking 
errors. Figure 10 shows the trajectory of the control 
input signal u . Figure 11 shows the trajectory of the 

estimated parameter ̂ .  

Fig. 2. Angular position of the 
link: actual x1(″-″) and desired 
x1d (″--″). 

Fig. 3. Angular velocity of the 
link: actual x2 (″-″) and desired 
x2d (″--″). 

 
Fig. 4. Angular position of the 
motor shaft: actual x3 (″-″) and 
desired x3d (″--″). 

Fig. 5. Angular velocity of the 
motor shaft: actual x4 (″-″) and 
desired x4d (″--″).   

 
Fig. 6. Tracking error e1. Fig. 7. Tracking error e2. 

 
Fig. 8. Tracking error e3. Fig. 9. Tracking error e4. 

 
Fig. 10. Control input u.   Fig. 11. Estimated parameter 

̂ . 

We can see that the control performances, the tracking 
and the parameter estimation of the single-link flexible-
joint robot system using direct adaptive backstepping 
control with tuning functions are effective. 

V. CONCLUSIONS 

In this paper, the adaptive backstepping control with 
tuning functions approach for a single-link flexible-joint 
robot model is proposed to estimate the parameters. The 
control law and the parameter update law are designed 
along with the Lyapunov function to guarantee global 
stability. The simulation results are given to illustrate 
that the proposed approach is effective and gives good 
tracking, good parameter estimation and good control 
tracking performances. 
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