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Abstract — In this paper, direct adaptive backstepping control with tuning functions approach for a single-link flexible-
joint robot model is proposed. The proposed approach of adaptation is based on the tracking error based parameter
adaptation law. First, the direct adaptive backstepping control with tuning functions is applied for a class of nonlinear
systems in parametric strict-feedback form to avoid overparametrization. Next, the main steps of the controller design for
a single-link flexible-joint robot manipulator model are described. The stability of the proposed controller is studied by
using the Lyapunov functions. Finally, the simulation results are given to demonstrate the performance of the proposed

approach.

Index Terms — Single-link flexible-joint robot, backstepping control, direct adaptive control, tuning functions, direct

adaptation.

[. INTRODUCTION

Backstepping [1-2] is a recursive design procedure for
systematically selecting the control Lyapunov function
that allows the design of nonlinear controllers for
nonlinear systems in strict-feedback form. The idea of
backstepping is to design a controller recursively by
considering some of the state variables as virtual
controls and designing for them intermediate control
laws.

Adaptive backstepping is a nonlinear control design
technique that has been developed in [3] as an
alternative method for the adaptive control of the
nonlinear systems, which achieves boundedness of the
closed-loop states and convergence of the tracking error
to zero. This technique achieves the control of nonlinear
systems  with  parametric  uncertainties, these
uncertainties consist of unknown constant parameters
which appear linearly in the system equations.

The adaptive backstepping design employs more than
one estimate per unknown parameter. This
overparametrization makes the control law complicated
and difficult to implement. The tuning functions are
introduced to reduce the dynamic order of the adaptive
controller to its minimum. The number of parameter
estimates is equal to the number of unknown parameters
[1-2].

The adaptive backstepping control method proposed in
this paper is a direct adaptive backstepping control with
tuning functions method where controller parameters
are updated by the tracking error where the parameter
adaptation law is driven by tracking error to achieve

better parameter estimation and hence better tracking
performance.

During the last years, the study of the control of robots
manipulators with flexible joints drew a considerable
attention [4-5]. The backstepping control design
procedure has been used for synthesizing adaptive
controllers for a class of flexible-joint robotic
manipulators.

In this paper, we propose a parameter adaptation law
that is based on the tracking error based adaptation law.
The stability of the proposed controller is studied by
using the Lyapunov stability theorem and the simulation
results are given to demonstrate the performance of the
proposed controller.

The paper is organized as follows. In section II, a
dynamic nonlinear model for a single-link flexible-joint
robot is described. Based on this nonlinear model, direct
adaptive backstepping control with tuning functions is
designed, and the closed-loop stability analysis is
carried out in section III. Simulations results showing
the good performance of the proposed controller are
presented in section IV. In section V, some conclusions
close the paper.

II. DYNAMIC MODELING OF A SINGLE-LINK FLEXIBLE-
JOINT ROBOT

The single-link flexible-joint robot dynamic model is
given as follow [4, 6-7]

J1G, +MgLsin(q1)+K(q1 —qz):O

6]
J54, _K(ql_qz):”
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where u is the input torque. J; and J, are the inertias

of the link and the motor, respectively. M is the link
mass and g is the gravity. L is the link length and K

is the stiffness. g, and ¢, are the angular position of

the link and the motor shaft, respectively. The single-
link flexible-joint robot is presented schematically in

Fig. 1.
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Fig. 1. Single link flexible joint robot.
Let the state variables defined as follows: x, =g,

X, =¢,, X; =q, and x, =g, , and its dynamic model

becomes
X =X,
’:Cz = fl(xl’x3)+g1x3 @
Xy =X,
X, =1, (xl,x3)+g2u
with

. MgL K K
A (xl,x3):—t}glsm(x1)—‘]1xl,gl :71

K 1 @

fz(xl,x3)=J—2(xl —x3),g2 =72

III. DIRECT ADAPTIVE BACKSTEPPING CONTROL WITH
TUNING FUNCTIONS

The approach by tuning functions is developed in [1-2]
to avoid the problem of overparameterization and the
adaptation laws differentiations as a new form of
adaptive backstepping control. The principal advantage
is that the number of parameter estimates is minimal,
that is equal to the number of unknown parameters [1].
The proposed approach of adaptation is based on the
tracking error based parameter adaptation law.

Let us consider the 4” order nonlinear system [8-9]
given by

)'cl =X, 4
%y = byxy + s (X, %,)0+ [, (x,, %) 5)

Xy =Xy (6)

. T
Xg =byu+ @y (X,%y,%5,X)0 + f,(x,%5,%3,%,)  (7)
where, the parameter vector 6 € R” is unknown and
constant. The nonlinear functions f;: R’ >R and
o R’ >R’ (i=1,---,4) are known, and the control

gains b, are known. The control objective is to achieve

the asymptotic tracking of a reference signal y, by x;.

(4)

The reference signal y, and its derivatives y,,..., ),

are assumed piecewise continuous and bounded. In the
following, we describe the main steps of the controller
design for the single-link flexible-joint robot model.

Step 1: We consider the first subsystem (4), the state
variable x, is treated as a virtual control variable and

we define the first desired value x,;, =, =y,. The

first error is defined by e =x —¢,, and its time

derivative is given by
e =X —a;,=x,-q, ()

We consider the following Lyapunov function

1
V= ©
2

The derivative of the Lyapunov function is given by
Vi =eé =¢ [x2—c'z0]=e1 [ez+a1—d0] (10)
where x, =e, + ;. In order to ensure the stability of

the first subsystem described by equation (4), we take

the desired value of x,, the function ¢, such as

a, =x,, =—ke +a, (11
where k; > 0. The derivative of the Lyapunov function
becomes

Vl = —klel2 +ee, (12)
Step 2: We consider the subsystems (4) and (5), and we
define the error e, = x, — ¢, and rewrite the equations
of the system in the space (e1 , ez) as follows

é =e +a, —q (13)
&, = byxy + 05 (x,,%,)0 + f5(x,,%,) — & (14)

We take as the Lyapunov function

vy 1 5 1 4
h = 1+5e2+591“ 4 (15)
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where 6 = -6 is the estimation error that appears in

(5). One computes ¢, analytically

. Oay . Oa,. Oq..
Gg=——X+t_——y.+t—),

o o, (16)
_0a 04y 0o
axl ’ 8)};- ' ajjr '

The derivative of the Lyapunov function is given by

V, =V +ee,+0'T'0 (17)

= —klel2 +e, [el +b,e, +b,a, +¢;(xl,x2)é+ﬁ(xl,xz)

_Q%ﬂb_éﬁju—@ﬂy,+éﬁ“%—é+q)
ox, , y

r

where x; =e;+a, and the tuning function 7, is
defined as

(18)

In order to ensure the stability of both subsystems
described by equations (4) and (5), we take the desired

7, =L, (x),x,)e,

value of x;, the function &, , such as

1 T N Oay
o) :;[_kzez =€ =0, (%,)0= f,(, %)= ——x
2 1

(19)
f”xfﬁﬂ
55,

where k, > 0. The derivative of the Lyapunov function
becomes

V2 = —klel2 - k2e§ + b26263 + 67Tl"71 (—é + 72) (20)

Step 3: We consider the subsystems (4), (5) and (6), and

we define the error e; =x;—a, , and rewrite the

equations of the system in the space (el,ez,e3) as

follows

é =e +a, —q 2n
&y =byey +byat, + s (X, %,)0+ f,(x, x) -, (22)
é=x,-a, (23)
The Lyapunov function considered here is
%=%+;% (24)

One computes «, analytically

41

oa, & Oa,  Oa, » Oa oa oa, .
e R A 72yr+7.2yr %yr
0ox, ox, 00 oy, oy, oy,
Oa, Oa, oa, ¢ oa, 25)
=—=X +—=b,x; + —= 0, (x,X,)0 +— f,(x,,x,)
0x, X, X, X,
oa, » Oa, . Oa, oa, ...
+ 0+—= —J, +—=7.

Yot/ "
o, o iy

r r

The derivative of the Lyapunov function is given by
Vi=V, e

0 0
= —klel2 —kze§ +e [b262 +Xx, _%% x, _%% b,

g ax

Oa, é—%' (26)

_76 2 T( )A_ia 2f( )—
o, (x,,x,)0 X, X ;
ox. 2 axz S 00 ayr

2

oa oa 1 A
-2 _"25;;}+6?T1" 1(—6’+r3)
P, Y,

where x, =e, +a; and the tuning function 7, is
defined as

oa,
=7, -Tp,(x,x,)—"¢ 27
0ox,
In order to ensure the stability of both subsystems
described by equations (4), (5) and (6), we take the

desired value of x,, the function «;, such as

Oa, Oa, Oa, 7 A
o, =—ke;—be, +—x, +——bx;+—= ¢, (x,x,)0

81 62 0 : 0 29
a . . wes

—2 [0 +—2 73 +ﬁyr +&J’r +%‘?J’r

axZ o0 ayr ayr a-/Vr

where k; > 0. The derivative of the Lyapunov function
is reduced to

; 2 2 2
Vi, =—kie; —k,e; —kse; +ese, +e;

+6'T (—é + 73)

Step 4: We consider the subsystems (4), (5), (6) and (7),

and we introduce the error ¢, = x, —a, , and rewrite

the system equations in the space (el,ez,e3,e4) as

follows

& =e, +a, —d, (30)
&, = byey +byat, + s (x,%,)0+ f,(x,x5,) —a,  (31)
& =e, +ay—d, (32)

&, = byu+ @, (X%, X3,%,)0 + (X, Xy, %5, X,) — &5 (33)

We take as the Lyapunov function
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1,
Vv, =V, t (34)

One computes ¢, analytically

0 o 0 o, » O oa. 0
¢ :&5‘1*'73’52 _,_ﬁ,'% +;‘f5 -3 r+73yr+&5}.r+&yr

ax ox, O, 00 6yr oy, 3y, i,

0 0 oy &
&xz zbzx% q02 (x1 x2)9+ fz(x1 X,)+— % X, + 30
o, X, > > 0y 0

oo, . O oa oa

+%%5 9% P b B

R A A
(35)

The derivative of the Lyapunov function is given by
V4 = V3 +ese,

2 2 2 T 3
=-ke —k,e, —ke; +e, [b4u + @, (X, %5, %5,%,)0

oo, oa,  oa (36)
o, X, X3, X)) —— X% ——b,x; ——— ¢, (xl,xz)ﬂ
axl X 2
8a 80: L O oa, .
2 f‘Z(xl’ 2) "39_73 r_i.3 r
x3 o0 oy, ,
aa3 aa} T
- V. —— . |+e ( 9+T3)+9 r ( 9+T4)
, oy,

Then, we take the control law as

1 N
u :b—l:—k4€4 _(pi-(xl,-xzax37x4)€_ﬁ1(x1’x2’x3’x4)

0
+&x2 %b2x3 ¢72(x1,x2)6’+ fz(xl,)Q)
a 2 2 37
0 0 0 0 0 0
P %ﬁyﬁyﬁyﬁy
@(3 89 @}r @}r @jr @}r
0oy
%AF(%(XI,XZ) 24 (%33, mﬂ
00 5
Substituting the control law into V4 gives
. 0 A
V,= —klel2 —kze§ —k3e32 —k4e§ +e, i3(—6’+T4)
00
Oa, oo,
-, ——I o, | X, %, ) — =@, | X, x,, X3, X,
2 0n) 2 s |
ooy (4 ~r 1 A
+e; % -0+, |+0' T (-O0+71, (39)

2 2 oay
=—kie —k,e, —k3e3 -k e4+e4 % ( t9+z'4)

Oa, ( A
0( 9+r4)+9 r ( 9+r4)

+€3

42

The new tuning function 7, is defined as

0
T, =1 —F((pz (xl,)CZ)é%—(p4 (xl,xz,x3,x4)Je4 (39)
2

where k, > 0. The update law is selected as

X oa,
O=1,=T| 0,(x,,x,)e, —%(xpxz);%
’ (40)
oa,
)TQ TPy (xl,xz,x3,x4)e4J
2

) (xlaxz

with the choice: 6 = 7, , the derivative of the Lyapunov
function is reduced to

V, = kel —kyes —kyer —kye; <0 (41)

This directly leads to the asymptotic stability of the
errors of the closed-loop system. Barbalat’s lemma [10]

can be used to show that ¥ — 0 as f — oo . Thus e,

e, e and e, »>0 as t > .

IV. SIMULATION RESULTS

The single-link flexible-joint robot model used in this
paper is given by (2) where the parameter values are
given in Table. 1 [6].

Table 1. Single-link flexible-joint robot model parameters.

Symbol Value Unit
g 9,81 [m/s?]
M I [ke]
L 1 [m]
Ji 0.4 [kg.m?]
J, 0.02 [kg.m?]
K 100 [N.m/rad)

For simulation, the unknown parameter & of the system
is selected as & = MgL . Our objective is to force the

output of the system to follow the reference trajectory
given by: y, =0.1sin (t) . The tuning functions z,, 7,

and 7, are defined as

7, = ——sin(x,)e, 42)
1
oa
Ty =1, +—sin(x) — > e (43)
1 X2
a
T, =T, +—sin(xl)—3e4 (44)

Ji *2
where I' > 0. The stabilizing functions ¢;, @, and o,
are given by
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& =Xy, = ke +a (45)
1k +A'()+K +60!l
a, =X, =—| —k,e, —e +—sin(x, X +—x,
& Ji Ji x
a.yr a.yr
oo, O, 0 . oa, K
& =,y = ke, ~gey +—= 5y~ —sin(y) —= =
J J,
& %0
0 0
+;"2g1xj+iéf %5 “2y L‘zyr
a, aw - & T
The control law u is given by
1 ooy ooy 0oy O
u=— 464—%*(% )+ =2 sin(x)
& a G 0y
K o aw o
- 252G (48)
o e 2 T R
P P RV
o g sin{x;)
A ar
The update law is given by
A r . oa, Oay
O=1,=—sin(x))| —e, +—e;+—¢, (49)
1 Xy X
where I' > 0.

The selected initial conditions are: é(O):O and
T

MgL
x(O)z[O.l 0 0.1+2"sin(0.1) o}

design parameters are selected as follows:
ky=5,k,=7500, k, =5 and ' =0.015.

Simulation results are shown in figures 2 to 11. Figures
2 to 5 show actual and desired trajectories of the angular
position and velocity of the link and the motor shaft.
Figures 6 to 9 show the trajectories of the tracking
errors. Figure 10 shows the trajectory of the control
input signal u . Figure 11 shows the trajectory of the

The

k=1,

estimated parameter 6.

ey [radraes]

Fig. 3. Angular Velomty of the
link: actual x, ("-") and desired

"__m

Xaq ("

Fig. 2. Angular position of the
link: actual x;("-") and desired
Xia ("-=").

43

rr ¢ 6 0 0 2 u %o & e
Trafes:]

Fig. 4. Angular position of the
motor shaft: actual x; ("-") and
desired x3q ("--").

3]

Fig. 5. Angular velocity of the
motor shaft: actual x4 ("-") and
desired x4q ("--").
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Fig. 6. Tracking error e;. . Tracking error e;.

R o2 4§ 8 0 o2
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Trafes:]

. 8. Tracking error es. Fig. 9. Tracking error es.

0, N

2 4 6 &8 N O® W % B8 2 [

Tefse) 0 Timesed

Fig. 10. Control input u. Fig. 11. Estimated parameter

6.

We can see that the control performances, the tracking
and the parameter estimation of the single-link flexible-
joint robot system using direct adaptive backstepping
control with tuning functions are effective.

V. CONCLUSIONS

In this paper, the adaptive backstepping control with
tuning functions approach for a single-link flexible-joint
robot model is proposed to estimate the parameters. The
control law and the parameter update law are designed
along with the Lyapunov function to guarantee global
stability. The simulation results are given to illustrate
that the proposed approach is effective and gives good
tracking, good parameter estimation and good control
tracking performances.
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