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Abstract - Building 3D models for the real world from images has attired a lot the intention of researchers in the last years, 
because this does not require expensive devices, just cameras for the acquisition of images, and this can be viable when it is not 
possible to use active sensors such as laser scanner. In this paper, we present the full pipeline of building a 3D model from 
multiple images using a mobile camera. Our algorithm requires a sequence of images taken by an intrinsically calibrated camera, 
then we estimate the camera positions from the images and a 3D point cloud of the captured scene. From the point cloud, we 
construct a mesh model then we finish our work by mapping a texture for the mesh model to generate a textured 3D model.    
 
Index Terms - SURF, SFM, Texture Mapping. 
 
 

I. INTRODUCTION 
Building a realistic 3D model for the world has attired a 
lot the attention of researchers since decades. Even it 
seems easy to create a simple 3D model using a 
software like Maya or 3D Max, however the generation 
of a photorealistic complex object needs more efforts. 
Automatically reconstructing such 3D models requires 
first acquisition devices that can extract a 3D 
information of the scene. Then further modeling, 
computation and algorithms are usually required. For a 
long time, Laser scans (or similar techniques) have been 
extensively used, for example to produce 3D models in 
computer graphics. Usually associated with geometry 
post-processing (such as recovering smooth polygonal 
surfaces from point clouds), they provided nice results 
that are still used nowadays as references [1] or ground 
truth data. On the other hand, cameras provide more 
information such as color and textures. Used in stereo 
pairs or in multi-view settings with correct geometry 
modeling, they provide useful information. This can be 
used to reconstruct shapes in environments where active 
systems would not work, such as the reconstruction of 
large scale objects or environments [2]. 

The work presented in this paper is organized as 
follows: in section II we give a short review about the 
most important approaches and techniques that aim to 
solve the problem of building a 3D model for the real 
world, and the remainder of this paper focuses on the 
structure from motion (SFM) technique, which is 
implemented here. We assume that we have a sequence 
of images, taken by a partially calibrated camera see 
section III. Section IV presents all the necessary 
concepts, tools for implementing the 3D structure from 

motion algorithm, like features detection, matching 
which is the basic part of any SFM algorithm, the 
pseudo code of the implemented SFM algorithm will be 
presented in this section. Section V assumes that we 
dispose a colored 3D point cloud from which we see 
how to build a mesh model and generate a textured 3D 
model. Experimental results are given in section VI and 
conclusions are given in section VII. 

II. TECHNIQUES 

A. Shape from X 

Shape from X is a generic name for techniques that aim 
to extract shape from intensity images. The approaches 
that uses a single image tries to extract a certain 
characteristics in order to determine the depth 
information of the captured scene. This characteristic 
information may be brightness (shape from shading) [3], 
texture deformation (shape from texture)[4], and 
variations in the focus parameters (shape from 
Focus/Defocus) [5]. 

B. Stereo vision 

The principle of using stereo images is inspired from the 
human vision, which captures depth information using 
different sensory cues [6]. The stereoscopic vision uses 
the information obtained from the projection of the 
object, which is observed from two different views; the 
displacement of the two images can be used to 
triangulate the position of the object. Stereo vision 
assumes that we know the position of the stereo cameras 
in space, the distance that is separating the two cameras’ 
centers. The stereo system must solve two problems [7], 
the first is stereo matching by meant which parts of the 
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stereo images are similar to each other and the second 
one is the 3D reconstruction by triangulation. 

C. Shape from motion 

Shape from motion (already called structure from 
motion SFM or structure and motion estimation SAM), 
SFM refers to the process of estimating simultaneously 
the 3D geometry of the scene (structure) and the 
positions of the cameras (motion). It exploits the 
matching points between the images. Fig 1. shows an 
example of a 3D model constructed by moving the 
camera into 8 different positions in the scene.  

The first work on SFM including two and multi views 
structure appeared since the 1980s by Longuet-Higgins 
[8], a relative orientation evaluation technique was 
introduced. 

The development of the technical SFM for the multi 
views had been presented after, this multi views include 
the methods of factorization [9] and the methods of 
global optimization [10], [11], [12]. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Structure and motion estimation 
 

Later, bundle adjustment [13] in photogrammetry has 
made its way toward computer vision, for an optimal 
estimation of 3D geometry and the cameras parameters 
[14]. SFM has been the most popular algorithm for the 
3D modelling from images and it is based on finding 
matching points between the images. The most SFM 
algorithms are cited in the literature [15], [14].   

III. PARTIAL CAMERA CALIBRATION 

A. Pinhole camera model 

The simplest camera model and the widely used one in 
computer vision is the pinhole model of Fig 2. proposed 
by Hall [16]. The internal geometry and the position and 
orientation of the camera in the scene are modeled. It 
defines the basic projective imaging geometry with 
which the 3D objects are projected onto the 2D image 
plane.  

 The camera can be modelled by a set of intrinsic and 
extrinsic parameters. The intrinsic parameters are those 
that define the optical properties of the camera such as 
the focal length, the aspect ratio of the pixels, and the 
location of the image centre where the optical axis 
intersects the image plane. The extrinsic parameters 

define the position and orientation (pose) of the camera 
with respect to some external world coordinate system. 

In this model, a scene view is formed by projecting 3D 
points into the image plane using a perspective 
transformation.  

 sx = K [R T]Xsx = K [R T]X  (1) 

Where: R (3x3) rotation matrix, T (3x1) translation 
vector and  K (3x3) is a camera matrix, or a matrix of 
intrinsic parameters.  

 
 

Figure 2. The Pinhole camera model 
 

Equation (1) may be rewritten as: 
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B. Camera calibration 

The calibration means the determination of the 
projection matrix of equation (3) thus computing the 
different intrinsic and extrinsic camera parameters. 
Many standards methods exist for doing calibration [7] 
such as Tsai, Zhang, Faugeras and Toscani…the 
principle of these methods is using a calibration pattern, 
that disposes some features with known geometry and 
they should be easily extracted from their corresponding 
calibration images. Camera calibration for a single and 
stereo camera can be done by a Matlab toolbox [17]. 

Since we are working to estimate the camera motion 
from the image sequence so at the beginning we need 
just a partial calibration by meant the intrinsic camera 
matrix K presented in equations (1) and (2) then from 
each image we estimate the camera motion , thus the 
corresponding rotation matrix and translation vector. 

 

IV. 3D STRUCTURE AND CAMERA MOTION ESTIMATION 
In this section, we present how to estimate the 3D 
structure of the scene and the camera motion from a 
sequence of images.  At the end of this section we 
present the implemented SFM algorithm, the basic part 
of our algorithm consist of features detection and 
matching , here we interest to points as type of features 
instead of lines because the process is complex so the 
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points are easier to manipulate and they don’t take a lot 
of memory size. 

A. Features detection and matching 

Feature detection and matching techniques are important 
in many applications in computer vision and are core 
areas in 3D reconstruction. Some early development 
introduced finding feature points that are corner-like 
[18]. Interestingness could also be evaluated as high 
change of intensity using various sliding window 
functions and this is the backbone of the work done by 
people like Förstner [19] and then Harris and Stephens 
[20]. While eigenvalue based detectors like this, such as 
the Harris detector has rotation invariance, they are non-
invariant to image scale. 

More modern techniques such as Lowe’s Scale Invariant 
Feature Transform (SIFT) use sampling of scale space to 
detect points that are invariant to changes in both scale 
and rotation [21]. This inspired the development of the 
Speeded Up Robust Feature (SURF) detector and has 
some gains in speed and robustness [21]. Features 
matching is done by comparing the Euclidean distance 
between the vectors descriptors and those that have the 
minimum distance their corresponding points are 
considered matching points. 

B. Fundamental and essential matrices estimation 

The fundamental matrix (denoted by F) and the essential 
matrix (denoted by E) are two very useful mathematical 
objects for 3D reconstruction. They are mostly similar, 
except that the essential matrix is assuming usage of 
calibrated cameras. 

a) Fundamental matrix 

Given two images with a set of correspondence features, 
then the image points satisfy the relation  

x0T F x = 0x0T F x = 0 

Where F is the fundamental matrix of dimension 3x3 
and rank 2. Finding 7 or more good matching points will 
allow for the estimation of the Fundamental matrix 
which would describe the necessary of the so called 
epipolar geometry [13]. 

Fig 3. shows the concept of epipolar geometry where a 
plane could be bounded at the 3D location of the point 
and two other locations of where this point appears on 
two pictures. All possible configurations of this plane 
will include epipolar line segments that intersect at an 
epipole on each image. This means knowing where the 
points are on an epipolar line segment means its partner 
is on the corresponding epipolar line segment of the 
second pictures.  

b) Essential matrix 

The essential matrix, a 3x3 sized matrix, imposes a 
constraint between a point in one image and a point in 
the other image with 

x0Ex = 0x0Ex = 0 

Another important fact we use is that the essential matrix 
is all we need in order to recover both cameras for our 
images, although only up to scale; but we will get to that 
later. So, if we obtain the essential matrix, we know 
where each camera is positioned in space, and where it is 
looking. 

C. Essential matrix decomposition 

Four possible decompositions of the essential matrix 
[11]: 

P1 = [I 0] P2 = [R T]P1 = [I 0] P2 = [R T] 

P1 = [I 0] P2 = [R0 T ]P1 = [I 0] P2 = [R0 T ] 

   P1 = [I 0] P2 = [R ¡ T ]P1 = [I 0] P2 = [R ¡ T ] 

     P1 = [I 0] P2 = [R0 ¡ T ]P1 = [I 0] P2 = [R0 ¡ T ] 

In order to select the correct pair of cameras projection 
matrices we should triangulate a set of matching points 
(see section D) and we take P1; P2P1; P2  the pair that is 
generating 3D points in front of the two cameras see Fig 
4. where the best solution is the one in the upper left. 
 

 
Figure 3. The epipolar geometry 

 
Figure 4. The best solution for selecting P1 , P2 
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Figure 5. Triangulation illustration 

D. 3D point triangulation 

Up to this step, we have recovered the two camera 
projections matrices from the essential matrix and we 
dispose the set of matched points from the two views, 
we can estimate the 3D structure of the matched points 
by triangulation [22]. As an illustration let us look to Fig 
5 a 3D point X can be computed from its measured pixel 
positions (u1; u2; :::)(u1; u2; :::) in two or more views (C1; C2; :::)(C1; C2; :::) . 
Ideally, X should lie at the intersection of the back 
projected rays (solid lines). However, because of 
measurement noise, these rays will not generally 
intersect. Hence X should be chosen so as to minimize 
the sum of squared errors between measured and 
predicted pixel positions. 

X = argmin
X

P

i = 1
k ui ¡

^
ui (Pi ; X )k2X = argmin

X

P

i = 1
k ui ¡

^
ui (Pi ; X )k2 

Where uiui  and ^
ui (Pi ; X )
^
ui (Pi ; X ) are the measured and predicted 

image positions in view i. 

E. Bundle adjustment  

One of the most important part of an SFM method is 
refining and optimizing the reconstructed scene, also 
known as the process of Bundle Adjustment (BA) [23]. 
This is an optimizing step where all the data we gathered 
is fitted to a monolithic model. Both the position of the 
3D points and the positions of cameras are optimized, so 
reprojection errors are minimized (that is, approximated 
3D points are projected on the image close to the 
position of originating 2D points).  Fig 6. shows a simple 
setup with 3 images and 4 3D points that are visible in 
every image. The cameras and 3D points have been 
recovered from the 2D features extracted in the images, 
The process of bundle-adjustment aims at minimizing 
the reprojection error of the reconstructed 3D points in 
the images using the computed cameras. 

F. The overall SFM algorithm 

The overall problem of constructing 3D points out from 
multiple images can be broken down into two main 
steps: Initial 3D model from two images, and 
Refinement through adding more images. The initial 3D 
model is important as its accuracy will determine the 
 
 

 
 
 
 
 
 
 
 
 
 
                                              

 
 

Figure 6. Bundle adjustment process 

quality of the model as more points are added. 
Additional points are added relative to the initial model 
as it serves as the base where everything is built upon. 
Every addition is based on the previous result and the 
process is iterative. The overall problem broken up into 
steps is outlined SFM Algorithm 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
V. MESH BUILDING AND TEXTURE MAPPING 

Once we have a colored 3D point cloud, we can proceed 
to mesh building or usually called model fitting which 
gives a polygon mesh from the point cloud that gives 
another type of scene representation. We used MeshLab 
software [24], which is widely used for 3D point cloud 
processing like selecting, smoothing and coloring 
meshes, surface reconstruction and texture mapping. 
Texture mapping means we fill each patch of the mesh 
by a texture patch from the different images.  

VI. EXPERIMENTAL RESULTS AND SIMULATION 
Here we present our experimental results obtained using 
different datasets so visual results and some statistical 
results are given. We worked with OpenCV 2.4.6 that 
disposes the most functions that we need in our SFM 
algorithm. 

// SFM Algorithm 
Input: K (3x3),  
      Sequence of n images, n not large 
For the 1st image and the 2nd image 
       1. Detect features in each image 
       2. Match features 
       3. Estimate F12 
       4. Deduce E12 
       5. Decompose E12 to get P1, P2. 
       6. Reconstruct the 3D points  
       7. Get the colors of the 3D points.  
   end 
For i=3 to n do  
       For images i and i+1 
              Repeat steps 1-7 
           end 
      8. Refine the overall process by  
        bundle adjustment 
end 
Output: n (3x4) camera matrices, 
        (.ply) file containing the  
        Colored 3D point cloud. 
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A. Visual results  

It is important to mention the hardware specifications 
that we worked with, so we used a computer that 
disposes 4 GB of RAM, CPU of Intel i3 generation, Intel 
graphic card. 

The obtained results of the constructed 3D models are 
shown in Fig 7. We have taken 3 examples of sequence 
of images. 

B. Results evaluation 

We have tried examples of different scale scenes where 
scene1 is a small object, scene 2 is a wall and the last 
one is a building. An important point is that our 3D 
reconstruction is up to scale means we don’t specify the 
real measurements directly from the point cloud. 

 

 

 

 

 
                 Images                                3D Point Cloud 
 
 
 
 
 
 
              Mesh model                           Textured Model 
                                        Scene 1 
 
 
 
 
 
 
 
                                          Scene 2 
 

 
 

 
               
                                               Scene 3  

Figure 7. The constructed 3D models 
 

While working with 3D data, we cannot say that the 
result is correct by looking simply at reprojection error 
measures or raw point information. On the other hand, if 
we look at the point cloud itself we can immediately 
verify whether it makes sense or there was an error.  

We have taken a short sequence of images, but using a 
long sequence requires sometimes using for example 
GPU processor, for accelerating the process. The size of 

images in each sequence plays also an important role in 
the process  

VII. CONCLUSION 
We have presented the complete process of building 3D 
models for different real scenes, using sequence of 
images taken by an intrinsically calibrated camera. 
Based on estimating the camera motion and the 3D 
structure of the scene, we reconstruct a 3D point cloud; 
then we exported it as a binary file to the software 
MeshLab, for building a textured 3D model that can be 
used in different 3D file formats. We have implemented 
an incremental SFM algorithm means we treat the 
images in a sequential manner. The result of structure 
from motion can be exploited in different applications 
like: gaming and computer graphics, augmented reality 
and image based 3D modelling as in our case, robotic for 
autonomous navigation and guidance. A lot of modern 
military applications requires gathering as much as 
possible information from different environments, the 
SFM will be very helpful application. 

Further perspectives on this work can be trying videos as 
input instead of images, then video processing tools are 
necessary for sampling frames then filtering good frames 
for the 3D reconstruction. 

The camera is calibrated in advance; however 
automatically calibrating the camera from images is very 
interesting, this especially when using images taken by 
different cameras instead of a single camera. 

Moving objects in the scene would cause the program of 
reconstruction to fail; possibly most of research in this 
field will be geared toward non-rigid structure from 
motion. 
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