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Abstract - In this paper a method for fault diagnosis of rolling bearings is presented. It consists of two major parts: vibration 
signal feature extraction and condition classification for the extracted features. In this paper Autoregressive Modeling 
followed by Principal Components Analysis (PCA) was introduced for feature extraction from faulty bearing vibration 
signals. After extracting feature vectors by AR-PCA, the support vector machine (SVM) was applied to automate the fault 
diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) 
is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have 
shown feasibility and effectiveness of the proposed approach. 
 
Index Terms - Autoregressive Modeling, Principal Components Analysis, Support Vector Machine, Particle Swarm 
Optimization, Wavelet Packet, Fault Diagnosis, Roller Bearing. 
 
 
 

I. INTRODUCTION 
Bearings are frequently applied components in the vast 
majority of rotating machines. Their running quality 
influences the working performance of equipment. 
Statistically, 30% of rotational mechanical equipments 
malfunction is caused by the faults in bearings [1]. 
Therefore, many important researches had been done in 
the advanced field of bearing fault diagnosis [1], [2], [3], 
[4]. Using the vibration signals of rolling bearings and 
components to monitor and diagnose their working state, 
is the common used method in the study of bearing fault 
diagnosis [1], [3]. Support Vector Machine (SVM) is a 
new machine learning method which was introduced by 
Vapnik on the foundation of statistical learning theory 
(SLT). However, since the middle of 1990s, the 
algorithms used for SVM started emerging with greater 
availability of computing power [5], [6]. The main 
difference between the known domain of artificial neural 
network (ANN) and SVM is in the principle of risk 
minimization (RM) [2], [3]. In case of SVM, structural 
risk minimization (SRM) principle is used to minimize 
an upper bound on the expected risk whereas in ANN, 
traditional empirical risk minimization (ERM) is used to 
minimize the error on the training data. The difference in 
RM leads to better generalization performance for SVM 
than ANN. According to the literature, SVM has been 
successfully applied to many 

applications, such as pattern identification, regression 
analysis, function approximating, etc [7], [8], [9], [10]. 
The results give the evidence that the technique is not 
only quite satisfying  from a theoretical point of view, but 
also can lead to high performance in practical 
applications. 
Finding out good features is an important phase in 
distinguishing the different mechanical failure; As an 
interesting example, Wavelet Packet analysis has been 
utilized for impulse mechanical failure classification [1]. 
Parameter optimization is the key to perform SVM. At 
present, the widely used methods of parameter 
optimization for SVM are network search method, K-
order cross-validation method, Leave-one-out method, 
etc. These algorithms have the disadvantage of huge 
amount of computation, and the calculated parameters 
are not always the best. In recent years, a series of 
intelligent bionic algorithms are proposed based on the 
biological behavior study in the natural, such as genetic 
algorithm (GA) and particle swarm optimization (PSO) 
[11], [12], [13]. 
PSO was proposed by Kennedy and Eberhart [14], [15]. 
And it is inspired by the social behavior of bird flocking, 
fish schooling and swarm theory, etc. The theoretical 
framework of PSO is very simple, and PSO possesses the 
properties of easy implementation and fast convergence 
[13], [16]. 
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In this paper, the higher dimension time series data is 
extracted by autoregressive modeling then the state 
eigenvectors are reduced by principal components 
analysis (PCA), finally the resulting vectors are being 
used as an input of a multi fault classifier which is 
composed of SVM. Because particle swarm optimization 
is powerful, easy to implement, and computationally 
efficient [15], this study introduces PSO as an 
optimization technique to simultaneously optimize the 
SVM parameters. 
 

II. FEATURE EXTRACTION 
The fault diagnosis is essentially a problem of pattern 
recognition, of which, an important step is feature 
extraction. 
In this study, three types of feature extraction are 
applied :Wavelet packet transform, Autoregressive 
modeling and PCA. 
 

A. WAVELET PACKET ALGORITHM  
     The step of feature extraction based on three layer 
wavelet packet is given as follows : 
Firstly,The vibration signal x(t) was decomposed by a 
mother wavelet, the signal features in eight frequency 
bands from low to high were extracted in the third layer. 
Secondly, The signal in each frequency band is extracted 
and the wavelet packet decomposition coefficient was 
reconstructed. ��� presents the reconstructed signal of 
���, ��� presents the reconstructed signal of ���, and so 
on. The composed signal is defined as : 
 
� = ��� + ��� + ��� + ��� + ��� + ��� + ��� + ���   (1) 

Finally, The signal energy of each frequency band is 
calculated as : 

��� = ∑ �����
��

���                                                          (2) 

Normalized, Let :  � = ∑ ���
�
���  

Eigenvector E was constructed based on each frequency 
band energy: 

� = [
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B. LEAST-SQUARE METHOD FOR AR 

PARAMETER ESTIMATION. 
       In this section, we derive a method of AR estimator, 
witch based on a least-squares (LS) minimization 
criterion using the time-domain relation �(�)�(�) =
�(�) [17], [18]. Let �(�) be an AR process of order p. 
Then �(�)  satisfies: 

�(�) = �(�) + ∑ ���(� − �)
�
��� = �(�) + ��(�)     (4) 

We interpret ��(�) as a linear prediction of �(�). from 
the n previous samples �(� − 1),…�(� − �), and we 
interpret �(�) as the corresponding prediction error. 
The vector � = [��,…,��]′  that minimizes the 

prediction error � = �{|�(�)|�}  is the AR coefficient 
vector,we have: 

� = �{|�(�)|�} = �{|��(�) − �(�)|�} 
                  = ���(0) + ��� + ��� + ����              (5) 
where α, R, r are defined by: 

� = [��,…,��]′                                                         (6) 

� = [���(1),… . ,���(�)]                                              (7) 
 
 

� = �

���(0) ���(−1) ⋯ ���(−� + 1) 

���(1) ���(0) ⋯ ���(−� + 2)
⋮

���(� − 1)
⋮

���(� − 2)
⋮                
⋯                 

⋮
���(0)

�   (8) 

 
The vector α  that  minimizes  (5) is given by: 
� = −����                                                                  (9) 
with corresponding minimum prediction error : 
� = ���(0) − ������                                                (10) 
The least-squares AR estimation method is based on a 
finite sample approximate solution of the above 
minimization problem. Given a finite set of 
measurements {�(�)}���

�  we approximate the 
minimization � = �{|�(�)|�} by the finite sample cost 
function: 

�(�) = � |�(�)|�

��

����

 

 

�(�) = ∑ ��(�) + ∑ ���(� − �)
�
��� �

���
����

              (10) 

 
�(�) = ‖ℎ + ��‖ �                                                  (12) 
 
Such that: 

ℎ = �

�(��)

�(�� + 1)
⋮

�(��)

�; 

� = �

�(�� − 1) ⋯ �(�� − �)

�(��) ⋯ �(�� + 1 − �)
⋮
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⋮
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⋮
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�; 

 
where we assume x(n) = 0 for n < 1 and n > N The vector 
�  that minimizes f(�) is given by: 

 
 � = −(� ∗ �)��(� ∗ ℎ                                            (13) 
where, as seen from (12) the definitions of X and h 
depend on the choice of (��,��), when  �� = � + 1  and 
�� = �  this choice is often named the covariance 
method. 
 

C. PRINCIPAL COMPONENTS ANALYSIS 
(PCA) [3] 

 
The time series of vibration signal can be written as 
��(� = 1,2,…,�), m linear independent variables ��(� =
1,2,…,�), � ≤ � can be obtained by SVD to denote ��,  
then: 
� = ��                                                                      (14) 
where B is � ∗ � transformation matrix. 
With the matrix transformation, so we have: 
�(���) = ��(���)��                                             (15) 
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�� = ����
�                                                              (16) 

Since autocorrelation matrix ��  is real symmetric 
matrix, autocorrelation matrix ��  can be changed to a 

diagonal matrix which is composed of n positive real 
eigenvalues ��(� = 1,…,�) of ��, then: 
�� = �[(��)

�] = [��]                                                (17) 

Where �� > �� > ⋯ > �� . We can choose m 
eigenvectors which corresponding the prior m 
eigenvalues, the m eigenvectors can constitute a m 
subspace. 
In order to keep the m eigenvectors maintaining adequate 
original information, the m should be: 
∑ ��
�
��� ∑ ��

�
���⁄ > 85%                                             (18) 

It means that eigenvalues ��(� = 1,…,�) compressed 
main information of the original signals, so we can 
achieve the fault pattern classified by the eigenvalues and 
eigenvectors research. 
 

III. SUPPORT VECTOR MACHINE 
 

   The support vector machine (SVM) is a supervised 
learning method that generates input-output mapping 
functions from a set of labeled training data. For 
classification, nonlinear kernel functions are often used 
to transform input data to a high-dimensional feature 
space in which the input data become more separable 
compared to the original input space [19]. 
    Support vector machine (SVM) based on statistical 
learning theory is proposed according to optimal hyper-
plane in the case of linear separable [1]. 
If the hyper-plane separates all samples correctly, it must 
satisfy the following condition [4]: 
 
��(〈�; �〉 − ��) ≥ +1,∀ � ∈ {1,…,�}                     (19)                      
In order to find the optimal hyper-plane, we need to 
minimize the following functional [4]: 
 

�(�) =
�

�
‖�‖�                                                          (20)                                                                  

Solution of the optimal problem is given by the saddles 
of Lagrange function as below: 
 

�(�,��,�) =
‖�‖�

�
− ∑ ��[��(〈�; �〉 − ��) − 1]�

��� (21)       

where   � = (��,. . ,��)   is the Lagrange coefficient;  
�� ≥ 0,∀ i .  
The original problem can be transferred to the dual 
problem as below: 

�(�) = ∑ �� −
�

�
∑ ��
�
�,����

�
��� ��������〈��; ���〉  (22)         

subject to: 
 
∑ ���� = 0 �� �� ≥ 0�
���   

 
If �∗ is the optimal solution, then: 
 
〈�∗; �〉 = ∑ ��

∗��
�
��� 〈��; �〉                                      (23)                                        

It means that the weight coefficients of the optimal 
hyper-plane are the linear combination of the training 

sample vector. According to the Kuhn−Tucker condition, 
the solution of optimal problem must satisfy: 
�∗
�[��(〈�

∗; �〉 − ��
∗) − 1] = 0                                 (24)                                    

were ��
∗   is given by: 

 

��
∗ =

�

���
∑ (�� − ��

��∗)���
���                                         (25) 

where N��: nomber of support vectors. 
After solving the above problem, we can get the optimal 
classification function as below: 

   �(�) = ����∑ �∗����
�� − ��

∗
�∈���

�                      (26) 

    The nonseparable problem can be solved by soft-
margin SVM [8], [20], [21]. 
If we used the inner  k(��,�) substitute for the inner of 
the optimal hyperplane, the original feature space is 
mapped to new feature space [22]. And the optimal 
function can be formulated as below:  
 

�(�) = ∑ �� −
�

�
∑ ��
�
�,����

�
��� ��������k(��,���)        

subject to: 
∑ ���� = 0 ��� 0 ≤ �� ≤
�
��� �   

The corresponding decision function is written as below: 

   �(�) = ����∑ �∗��k(��
��) − ��

∗
�∈���

�                 (27)                                                                                    

here,  k(��,�)  is called kernel function. 
Usually, the kernel function can be expressed as below 
[7], [23]. 
Polynomial: 
k(��,��) = (1 + 〈��,��〉)

�                                       (28)                                           
where “q” is the degree of the polynomial. 
Radial basis function (RBF): 
k(��,��) = exp (−‖��−��‖

�/2��)                         (29)             
where ��is the variance of the Gaussian function. 
Sigmoid: 
k(��,��) = tanh(��〈��; ��〉 + ��)                           (30)          
where: δ, ��  and  ��  are the parameters of kernel 
function. The classification performances of SVM are 
affected by three techniques;  the selecting of the kernel, 
the choosing of the kernel parameters, and the choosing 
of the regularization parameter “c” [4]. 
     Most of cases in practical are multi-classed, such as in 
the rolling bearing classifying, it can be sorted into 
normal, outer race fault and inner race fault, etc. So, we 
have to design an approach to expend the application of 
SVM to a multi-classifying field because the SVM can 
deal with only two classes. The different combination 
principles constitute different classifying algorithm [7], 
[24], [25].  We employ the one-against-the-rest method 
to compose a multi-fault classifier. Since the SVM 
generalization performance heavily depends on the right 
setting of “c” and “σ”, these two parameters need to be 
set properly by the user. According to the experience 
from numerical experiments [26], [27], “c” and “σ” 
exhibit a (strong) interaction. As a consequence, they 
should be optimized simultaneously, rather than 
separately. 

IV. THE PARTICLE SWARM OPTIMIZATION 
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The particle swarm optimization (PSO) consists of a 
swarm of particles flying through the search space. Each 
particle is treated as a point in a D-dimensional space. 
The  ��� particle is represented  �� =
(���,���,…,���,���). The best previous position of any 
particle is recorded and represented as �� =
(���,���,…,���,���) . The index of the best particle 
among all the particles in the population is represented 
by the symbol G. The rate of the position change 
(velocity) for the ���  particle is represented as �� =
(���,���,…,���,���). The updated velocity and position 
of the  ��� particle at the k-th iteration are [11]: 
 

���
� = �. ���

��� + ��. ��. ���� − ���
���� 

                             + ��. ��. ���� − ���
����                       (31)    

                                                                                         

���
� = ���

��� + ���
�                                                        (32)                                                  

Where ��  and ��  are constants knows as the cognitive 
and social acceleration coefficients, respectively, �  is 
the inertia weight, ��  and ��  are random numbers 
between 0 and 1. 
The first part of (31) represents the previous velocity, 
which provides the necessary momentum for particles to 
fly across the search space. The second part is 
the ”cognition” part, which represents the private 
thinking of the particle itself. 
The third part is known as the ”social” component, which 
represents the collaboration among the particles. In 
addition, the implementation of  PSO also requires 
placing a limit on the particle velocity, and the limit, i.e. 
the maximum allowed velocity ����  , determines the 
searching granularity of space. The inertia weight  �  
plays the role of balancing the global search and local 
search, and it can be a positive constant or even a positive 
linear or nonlinear function of time. 
 

V. EXPERIMENTAL SETUP AND 
VIBRATION DATA 

 
In this section, an experimental dataset of a typical 
ballbearing is considered. These data are recorded by 
Tabaszewski and Cempel (1998). The ball bearing type 
that has been tested is 6402 (steel cage). The shaft 
rotational frequency and the sampling frequency of the 
analyzer for recording the acceleration (�/��) signal of 
the ball bearing are 24.5625 and 16,384 Hz, respectively. 
For the data acquistion, the B&K analyser is used [28]. 
 

VI. SYSTEM IMPLEMENTATION DETAILS 
 
The database is composed from five different classes C1 
to C5, including a normal bearing and four faults of roller 
bearing ( outer race completely broken fault bearings, 
broken cage with one loose element fault bearings, 
damaged cage with four loose elements fault bearings 
and badly warned ball-bearings). Once the features are 
extracted by the AR-PCA method, the total database of 
bearing faults were divided in two sets: one for training 

(containing 60; 71% of the samples), and the other for 
test (containing 39; 29% of the samples). 
The classification performance of SVM is affected by 
two techniques, the choosing of the kernel parameters, 
and the choosing of the regularization parameter c [4]. 
The proposed approaches for SVM parameter 
optimization with PSO, is as follows: 
Step 1. Particle initialization and PSO parameters 
setting: Set the PSO parameters including: �� , �� , 
position of each particle, velocity of each particle, 
number of particles, number of iterations and velocity 
limitation . 
Step  2. Fitness evaluation: Perform SVM on each 
particle in population and compute the prediction 
accuracy. 
Step 3. Update the global and personal best (��  and ��) 
according to the fitness evaluation results. 
Step 4. Particle manipulations: Each particle moves to 
its next position using formula (21) and (22). 
Step 5. Stop condition checking: If stopping criteria 
(maximum iterations predefined) are not met, go to step 
2, otherwise, go to the next step. 
Step 6. End the training and testing procedure and save 
optimal c , δ for SVM. 
The swarm size is set to 30 particles. The searching 
ranges for c and δ are as follows: c ∈ [0; 10], and  � ∈ 
[0; 10]. Preliminary experiments also let this study set the 
personal and social learning factors (��, ��) = (1.3, 1.3) 
that achieves better classification accuracy. 
The inertia weight is set to the following equation: 
 

�(�) = ���� −
(���� − ����)

����

. � 

where ����  is the initial weight, ����  is the final 
weight, ����  is the maximum number of iterations or 
generation, and k is the current iteration number. The 
predefined maximum iteration is 10. When the maximum 
iteration is reached, the accuracy of test set is calculated 
by the predicted output of the trained SVM classifier.  
 

VII. ANALYSIS OF EXPERIMENTATION 
RESULTS 
 

In order to select the optimal values of the parameters p 
(order of autoregressive modeling), for bearing fault 
classification, a series of experiments had been carried 
out by varying the values of this parameter.The important 
variation range of parameter p is given as follows: 

 p from 24 to 48, 
The classification results in validation and in test 
obtained for different values of p are shown in table I, 
where the best classification result of bearing fault in the 
validation set 97.06% and in the test set 100% is obtained 
by using p = 39; ∂ = 0:3093 and c = 7:2086. 
Part of eigenvectors and recognition results are presented 
in table II, where the data with * presents test samples, 
the others present training data. 



International Workshop on Advanced Control, IWAC2014.     November, 3rd-4th 2014, Guelma, Algeria 

61 
 

Table III gives the classification result for this bearing 
fault classification problem based on : 

 the proposed method (SVM based on 
autoregressive modeling followed by PCA 
feature extraction). 

 SVM based on wavelet packet feature 
extraction ,where Discrete wavelet packet 
transform was used to decompose the time 
signals into eight packets at level 3 via 
Daubechies-8. 

A confusion matrix of dimension 5 *5 is constructed to 
show the bearing fault classification performance. The 
diagonal elements represent the correctly classified 
bearing fault. The off-diagonal elements represent the 
misclassification of bearing faults. 
We can draw conclusions from experiments: 

 when the order of autoregressif modeling (p) 
increase, It was noted a general trend of 
increasing of The Validation and test rate. 

 the classification accuracy is poor either in 
validation or test when we combine SVM with 
wavelet packet(W.P). 

 the best classification result of bearing fault in 
the validation set 97,06% and in the test set 
100% is obtained by using the proposed method 
of SVM-PSO based on Autoregressive 
Modeling followed by PCA feature extraction, 
where only 1 damaged cage with four loose 
elements fault bearing was judged to one loose 
elements fault bearing by error. 

These results clearly show the high percentage of correct 
classification reached for the validation set and test set, 
which clearly shows the good generalization capacity of 
SVM-PSO based on AR modeling and PCA for fault 
diagnosis of roller bearing. 
 

TABLE I 
SVM CLASSIFICATION RESULTS OF BEARING 

FAULT USING DIFFERENT VALUES OF P. 
 

Ordre of 
AR  

Modelin
g (p) 

size of 
input 
after 

applie
d PCA 

Optimal 
∂ 

Optimal 
c 

Rate of 
validatio

n 
% 

Rate 
of 

Test 
% 

24 
27 
36 
39 
45 
48 

3×1 
3×1 
3×1 
4×1 
4×1 
4×1 

0.296
9 

0.128
0 

0.174
1 

0.309
3 

0.343
5 

0.578
9 

7.403
6 

4.747
2 

8.311
3 

7.208
6 

8.166
1 

8.131
7 

76.47 
91.18 
94.12 
97.06 
97.06 
91.18 

 

100 
95.4

5 
95.4

5 
100 
100 
95.4

5 

 
 

 
 
 

TABLE II 
PART OF EIGENVECTORS AND RECOGNITION 

RESULTS 
 

input     1 2 3 4 5 6 
λ� 
λ� 
λ� 
λ� 

-
3.2426 

-
0.6186 
0.0376 

-
0.3145 

-
0.7951 
-
0.1080 
0.7607 
0.4669 

-
0.9907 
0.4806 
0.0011 
0.0246 

-
0.8133 

-
0.5672 

-
0.0164 
0.0233 

-
0.8524 
0.5961 

-
0.2214 
0.0410 

-
1.2722 
0.5314 
0.0263 

-
0.0497 

State C1 C2 C3 C3* C4* C5* 
Result C1 C2 C4 C3* C4* C5* 

 
TABLE III 

CLASSIFICATION RESULT OF BEARING FAULT 
IN VALIDATION AND TEST 

SVM Kernel 
function 

Validation  
results 

Test 
results 

Validation 
Rate(%) 

Test 
rate 
(%) 

AR 
+PCA 

Gaussian 70000 
06000 
00610 
00070 
00007 

40000 
03000 
00500 
00050 
00005 

97.06 100 

W.P Polynomial 70000 
06000 
00511 
00250 
00106 

40000 
03000 
00140 
00014 
00014 

85.29 63.64 

 
 

VIII. CONCLUSION 
In this paper, an intelligent diagnostic method based on 
AR-PCA with SVM-PSO approach is presented for fault 
diagnosis of bearings. The proposed method adopts AR-
PCA algorithm to extract features and SVM classifier to 
identify faults, however a particle swarm optimization is 
employed to simultaneously optimize the SVM kernel 
function parameter and the penalty parameter.  
The application demonstrates that the proposed approach 
can greatly improve the accuracy and efficiency of the 
bearing fault diagnosis. 
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